Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(4): e0254291, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35442978

RESUMO

Acinetobacter nosocomialis is a Gram-negative opportunistic pathogen, whose ability to cause disease in humans is well recognized. Blue light has been shown to modulate important physiological traits related to persistence and virulence in this microorganism. In this work, we characterized the three Blue Light sensing Using FAD (BLUF) domain-containing proteins encoded in the A. nosocomialis genome, which account for the only canonical light sensors present in this microorganism. By focusing on a light-modulated bacterial process such as motility, the temperature dependence of light regulation was studied, as well as the expression pattern and spectroscopic characteristics of the different A. nosocomialis BLUFs. Our results show that the BLUF-containing proteins AnBLUF65 and AnBLUF46 encode active photoreceptors in the light-regulatory temperature range when expressed recombinantly. In fact, AnBLUF65 is an active photoreceptor in the temperature range from 15°C to 37°C, while AnBLUF46 between 15°C to 32°C, in vitro. In vivo, only the Acinetobacter baumannii BlsA's ortholog AnBLUF65 was expressed in A. nosocomialis cells recovered from motility plates. Moreover, complementation assays showed that AnBLUF65 is able to mediate light regulation of motility in A. baumannii ΔblsA strain at 30°C, confirming its role as photoreceptor and in modulation of motility by light. Intra-protein interactions analyzed using 3D models built based on A. baumannii´s BlsA photoreceptor, show that hydrophobic/aromatic intra-protein interactions may contribute to the stability of dark/light- adapted states of the studied proteins, reinforcing the previous notion on the importance of these interactions in BLUF photoreceptors. Overall, the results presented here reveal the presence of BLUF photoreceptors in A. nosocomialis with idiosyncratic characteristics respect to the previously characterized A. baumannii's BlsA, both regarding the photoactivity temperature-dependency as well as expression patterns, contributing thus to broaden our knowledge on the BLUF family.


Assuntos
Acinetobacter baumannii , Acinetobacter , Acinetobacter/genética , Acinetobacter/metabolismo , Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Humanos , Temperatura , Virulência
2.
Front Microbiol ; 10: 1925, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497002

RESUMO

Light is an environmental signal that produces extensive effects on the physiology of the human pathogen Acinetobacter baumannii. Many of the bacterial responses to light depend on BlsA, a bluelight using FAD (BLUF)-type photoreceptor, which also integrates temperature signals. In this work, we disclose novel mechanistic aspects of the function of BlsA. First, we show that light modulation of motility occurs only at temperatures lower than 24°C, a phenotype depending on BlsA. Second, blsA transcript levels were significantly reduced at temperatures higher than 25°C, in agreement with BlsA protein levels in the cell which were undetectable at 26°C and higher temperatures. Also, quantum yield of photo-activation of BlsA (lBlsA) between 14 and 37°C, showed that BlsA photoactivity is greatly compromised at 25°C and absent above 28°C. Fluorescence emission and anisotropy of the cofactor together with the intrinsic protein fluorescence studies suggest that the FAD binding site is more susceptible to structural changes caused by increments in temperature than other regions of the protein. Moreover, BlsA itself gains structural instability and strongly aggregates at temperatures above 30°C. Overall, BlsA is a low to moderate temperature photoreceptor, whose functioning is highly regulated in the cell, with control points at expression of the cognate gene as well as photoactivity.

3.
Photochem Photobiol Sci ; 18(10): 2363-2373, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31290528

RESUMO

Sunlight is a ubiquitous environmental stimulus for the great majority of living organisms on Earth; therefore it is logical to expect the development of "seeing mechanisms" which lead them to successfully adapt to particular ecological niches. Although these mechanisms were recognized in photosynthetic organisms, it was not until recent years that the scientific community found out about light perception in chemotrophic ones. In this review we summarize the current knowledge about the mechanism of light sensing through the blue light receptor BlsA in Acinetobacter baumannii. We highlight its function as a global regulator that pleiotropically modulates a large number of physiological processes, many of which are linked to the ability of this opportunist pathogen to persist in adverse intrahospital environments. Moreover, we describe with some specific examples the molecular basis of how this photoregulator senses blue light and translates this physical signal by modulating gene expression of target regulons. Finally, we discuss the possible course of these investigations needed to dissect this complex regulatory network, which ultimately will help us better understand the A. baumannii physiology.


Assuntos
Acinetobacter baumannii/fisiologia , Proteínas de Bactérias/metabolismo , Luz , Transdução de Sinais/efeitos da radiação , Acetoína/metabolismo , Acinetobacter baumannii/efeitos da radiação , Flavina-Adenina Dinucleotídeo/sangue , Temperatura , Virulência
4.
Photochem Photobiol ; 93(3): 805-814, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28500705

RESUMO

BlsA is a BLUF photoreceptor present in Acinetobacter baumannii, responsible for modulation of motility, biofilm formation and virulence by light. In this work, we have combined physiological and biophysical evidences to begin to understand the basis of the differential photoregulation observed as a function of temperature. Indeed, we show that blsA expression is reduced at 37°C, which correlates with negligible photoreceptor levels in the cells, likely accounting for absence of photoregulation at this temperature. Another point of control occurs on the functionality of the BlsA photocycle itself at different temperatures, which occurs with an average quantum yield of photoactivation of the signaling state of 0.20 ± 0.03 at 15°C < T < 25°C, but is practically inoperative at T > 30°C, as a result of conformational changes produced in the nanocavity of FAD. This effect would be important when the photoreceptor is already present in the cell to avoid almost instantaneously further signaling process when it is no longer necessary, for example under circumstances of temperature changes possibly faced by the bacteria. This complex interplay between light and temperature would provide the bacteria clues of environmental location and dictate/modulate light photosensing in A. baumannii.


Assuntos
Acinetobacter baumannii/fisiologia , Proteínas de Bactérias/metabolismo , Luz , Temperatura , Acinetobacter baumannii/metabolismo
5.
Free Radic Biol Med ; 94: 99-109, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26898504

RESUMO

Singlet molecular oxygen ((1)O2) contributes to protein damage triggering biophysical and biochemical changes that can be related with aging and oxidative stress. Serum albumins, such as bovine serum albumin (BSA), are abundant proteins in blood plasma with different biological functions. This paper presents a kinetic and spectroscopic study of the (1)O2-mediated oxidation of BSA using the tris(2,2'-bipyridine)ruthenium(II) cation [Ru(bpy)3](2+) as sensitizer. BSA quenches efficiently (1)O2 with a total (chemical+physical interaction) rate constant kt(BSA)=7.3(±0.4)×10(8)M(-1)s(-1), where the chemical pathway represented 37% of the interaction. This efficient quenching by BSA indicates the participation of several reactive residues. MALDI-TOF MS analysis of intact BSA confirmed that after oxidation by (1)O2, the mass protein increased the equivalent of 13 oxygen atoms. Time-resolved emission spectra analysis of BSA established that Trp residues were oxidized to N'-formylkynurenine, being the solvent-accessible W134 preferentially oxidized by (1)O2 as compared with the buried W213. MS confirmed oxidation of at least two Tyr residues to form dihydroxyphenylalanine, with a global reactivity towards (1)O2 six-times lower than for Trp residues. Despite the lack of MS evidences, kinetic and chemical analysis also suggested that residues other than Trp and Tyr, e.g. Met, must react with (1)O2. Modeling of the 3D-structure of BSA indicated that the oxidation pattern involves a random distribution of (1)O2 into BSA; allowing also the interaction of (1)O2 with buried residues by its diffusion from the bulk solvent through interconnected internal hydrophilic and hydrophobic grooves.


Assuntos
Envelhecimento/metabolismo , Estresse Oxidativo , Soroalbumina Bovina/química , Oxigênio Singlete/química , 2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/farmacologia , Envelhecimento/patologia , Complexos de Coordenação , Interações Hidrofóbicas e Hidrofílicas , Cinética , Oxirredução , Ligação Proteica , Soroalbumina Bovina/metabolismo , Oxigênio Singlete/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triptofano/química , Triptofano/metabolismo
6.
Chemphyschem ; 16(4): 872-83, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25641205

RESUMO

The role of the mobile C-terminal extension present in Rhodobacter capsulatus ferredoxin-NADP(H) reductase (RcFPR) was evaluated using steady-state and dynamic spectroscopies for both intrinsic Trp and FAD in a series of mutants in the absence of NADP(H). Deletion of the six C-terminal amino acids beyond Ala266 was combined with the replacement A266Y to emulate the structure of plastidic reductases. Our results show that these modifications of the wild-type RcFPR produce subtle global conformational changes, but strongly reduce the local rigidity of the FAD-binding pocket, exposing the isoalloxazine ring to the solvent. Thus, the ultrafast charge-transfer quenching of (1) FAD* by the conserved Tyr66 residue was absent in the mutant series, producing enhancement of the excited singlet- and triplet-state properties of FAD. This work highlights the delicate balance of the specific interactions between FAD and the surrounding amino acids, and how the functionality and/or photostability of redox flavoproteins can be modified.


Assuntos
Ferredoxina-NADP Redutase/genética , Flavina-Adenina Dinucleotídeo/química , Fármacos Fotossensibilizantes/química , Rhodobacter capsulatus/enzimologia , Ferredoxina-NADP Redutase/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Processos Fotoquímicos , Fármacos Fotossensibilizantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...