Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35681767

RESUMO

No previous works have attempted to combine generative adversarial network (GAN) architectures and the biomathematical modeling of positron emission tomography (PET) radiotracer uptake in tumors to generate extra training samples. Here, we developed a novel computational model to produce synthetic 18F-fluorodeoxyglucose (18F-FDG) PET images of solid tumors in different stages of progression and angiogenesis. First, a comprehensive biomathematical model is employed for creating tumor-induced angiogenesis, intravascular and extravascular fluid flow, as well as modeling of the transport phenomena and reaction processes of 18F-FDG in a tumor microenvironment. Then, a deep convolutional GAN (DCGAN) model is employed for producing synthetic PET images using 170 input images of 18F-FDG uptake in each of 10 different tumor microvascular networks. The interstitial fluid parameters and spatiotemporal distribution of 18F-FDG uptake in tumor and healthy tissues have been compared against previously published numerical and experimental studies, indicating the accuracy of the model. The structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) of the generated PET sample and the experimental one are 0.72 and 28.53, respectively. Our results demonstrate that a combination of biomathematical modeling and GAN-based augmentation models provides a robust framework for the non-invasive and accurate generation of synthetic PET images of solid tumors in different stages.

2.
Sci Rep ; 12(1): 10062, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710559

RESUMO

A deeper understanding of the tumor microenvironment (TME) and its role in metabolic activity at different stages of vascularized tumors can provide useful insights into cancer progression and better support clinical assessments. In this study, a robust and comprehensive multi-scale computational model for spatiotemporal transport of F-18 fluorodeoxyglucose (FDG) is developed to incorporate important aspects of the TME, spanning subcellular-, cellular-, and tissue-level scales. Our mathematical model includes biophysiological details, such as radiopharmaceutical transport within interstitial space via convection and diffusion mechanisms, radiopharmaceutical exchange between intracellular and extracellular matrices by glucose transporters, cellular uptake of radiopharmaceutical, as well as its intracellular phosphorylation by the enzyme. Further, to examine the effects of tumor size by varying microvascular densities (MVDs) on FDG dynamics, four different capillary networks are generated by angiogenesis modeling. Results demonstrate that as tumor grows, its MVD increases, and hence, the spatiotemporal distribution of total FDG uptake by tumor tissue changes towards a more homogenous distribution. In addition, spatiotemporal distributions in tumor with lower MVD have relatively smaller magnitudes, due to the lower diffusion rate of FDG as well as lower local intravenous FDG release. Since mean standardized uptake value (SUVmean) differs at various stages of microvascular networks with different tumor sizes, it may be meaningful to normalize the measured values by tumor size and the MVD prior to routine clinical reporting. Overall, the present framework has the potential for more accurate investigation of biological phenomena within TME towards personalized medicine.


Assuntos
Fluordesoxiglucose F18 , Neoplasias , Humanos , Neoplasias/diagnóstico por imagem , Neovascularização Patológica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Microambiente Tumoral
3.
Sci Rep ; 11(1): 16058, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362955

RESUMO

Aortic dissection (AD) is one of the fatal and complex conditions. Since there is a lack of a specific treatment guideline for type-B AD, a better understanding of patient-specific hemodynamics and therapy outcomes can potentially control the progression of the disease and aid in the clinical decision-making process. In this work, a patient-specific geometry of type-B AD is reconstructed from computed tomography images, and a numerical simulation using personalised computational fluid dynamics (CFD) with three-element Windkessel model boundary condition at each outlet is implemented. According to the physiological response of beta-blockers to the reduction of left ventricular contractions, three case studies with different heart rates are created. Several hemodynamic features, including time-averaged wall shear stress (TAWSS), highly oscillatory, low magnitude shear (HOLMES), and flow pattern are investigated and compared between each case. Results show that decreasing TAWSS, which is caused by the reduction of the velocity gradient, prevents vessel wall at entry tear from rupture. Additionally, with the increase in HOLMES value at distal false lumen, calcification and plaque formation in the moderate and regular-heart rate cases are successfully controlled. This work demonstrates how CFD methods with non-invasive hemodynamic metrics can be developed to predict the hemodynamic changes before medication or other invasive operations. These consequences can be a powerful framework for clinicians and surgical communities to improve their diagnostic and pre-procedural planning.


Assuntos
Antagonistas Adrenérgicos beta/uso terapêutico , Dissecção Aórtica/tratamento farmacológico , Simulação por Computador , Hemodinâmica , Hidrodinâmica , Modelos Cardiovasculares , Dissecção Aórtica/patologia , Velocidade do Fluxo Sanguíneo , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Mecânico
4.
Sci Rep ; 11(1): 12757, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140562

RESUMO

Coarctation of the aorta (CoA) is a congenital tightening of the proximal descending aorta. Flow quantification can be immensely valuable for an early and accurate diagnosis. However, there is a lack of appropriate diagnostic approaches for a variety of cardiovascular diseases, such as CoA. An accurate understanding of the disease depends on measurements of the global haemodynamics (criteria for heart function) and also the local haemodynamics (detailed data on the dynamics of blood flow). Playing a significant role in clinical processes, wall shear stress (WSS) cannot be measured clinically; thus, computation tools are needed to give an insight into this crucial haemodynamic parameter. In the present study, in order to enable the progress of non-invasive approaches that quantify global and local haemodynamics for different CoA severities, innovative computational blueprint simulations that include fluid-solid interaction models are developed. Since there is no clear approach for managing the CoA regarding its severity, this study proposes the use of WSS indices and pressure gradient to better establish a framework for treatment procedures in CoA patients with different severities. This provides a platform for improving CoA therapy on a patient-specific level, in which physicians can perform treatment methods based on WSS indices on top of using a mere experience. Results show how severe CoA affects the aorta in comparison to the milder cases, which can give the medical community valuable information before and after any intervention.


Assuntos
Aorta/fisiopatologia , Coartação Aórtica/fisiopatologia , Estresse Mecânico , Túnica Íntima/fisiopatologia , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Hemodinâmica , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...