Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 249: 118320, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331148

RESUMO

In a global context, trace element pollution assessment in complex multi-aquifer groundwater systems is important, considering the growing concerns about water resource quality and sustainability worldwide. This research addresses multiple objectives by integrating spatial, chemometric, and indexical study approaches, for assessing trace element pollution in the multi-aquifer groundwater system of the Al-Hassa Oasis, Saudi Arabia. Groundwater sampling and analysis followed standard methods. For this purpose, the research employed internationally recognized protocols for groundwater sampling and analysis, including standardized techniques outlined by regulatory bodies such as the United States Environmental Protection Agency (USEPA) and the World Health Organization (WHO). Average values revealed that Cr (0.041) and Fe (2.312) concentrations surpassed the recommended limits for drinking water quality, posing serious threats to groundwater usability by humans. The trace elemental concentrations were ranked as: Li < Mn < Co < As < Mo < Zn < Al < Ba < Se < V < Ni < Cr < Cu < B < Fe < Sr. Various metal(loid) pollution indices, including degree of contamination, heavy metal evaluation index, heavy metal pollution index, and modified heavy metal index, indicated low levels of groundwater pollution. Similarly, low values of water pollution index and weighted arithmetic water quality index were observed for all groundwater points, signifying excellent groundwater quality for drinking and domestic purposes. Spatial distribution analysis showed diverse groundwater quality across the study area, with the eastern and western parts displaying a less desirable quality, while the northern has the best, making water users in the former more vulnerable to potential pollution effects. Thus, the zonation maps hinted the necessity for groundwater quality enhancement from the western to the northern parts. Chemometric analysis identified both human activities and geogenic factors as contributors to groundwater pollution, with human activities found to have more significant impacts. This research provides the scientific basis and insights for protecting the groundwater system and ensuring efficient water management.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Oligoelementos , Poluentes Químicos da Água , Água Subterrânea/análise , Água Subterrânea/química , Arábia Saudita , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Oligoelementos/análise
2.
ACS Omega ; 8(43): 40517-40531, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929092

RESUMO

The prediction of the yields of light olefins in the direct conversion of crude oil to chemicals requires the development of a robust model that represents the crude-to-chemical conversion processes. This study utilizes artificial intelligence (AI) and machine learning algorithms to develop single and ensemble learning models that predict the yields of ethylene and propylene. Four single-model AI techniques and four ensemble paradigms were developed using experimental data derived from the catalytic cracking experiments of various crude oil fractions in the advanced catalyst evaluation reactor unit. The temperature, feed type, feed conversion, total gas, dry gas, and coke were used as independent variables. Correlation matrix analyses were conducted to filter the input combinations into three different classes (M1, M2, and M3) based on the relationship between dependent and independent variables, and three performance metrics comprising the coefficient of determination (R2), Pearson correlation coefficient (PCC), and mean square error (MSE) were used to evaluate the prediction performance of the developed models in both calibration and validations stages. All four single models have very low R2 and PCC values (as low as 0.07) and very high MSE values (up to 4.92 wt %) for M1 and M2 in both calibration and validation phases. However, the ensemble ML models show R2 and PCC values of 0.99-1 and an MSE value of 0.01 wt % for M1, M2, and M3 input combinations. Therefore, ensemble paradigms improve the performance accuracy of single models by up to 58 and 62% in the calibration and validation phases, respectively. The ensemble paradigms predict with high accuracy the yield of ethylene and propylene in the catalytic cracking of crude oil and its fractions.

3.
Heliyon ; 9(9): e19784, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37810075

RESUMO

The intrusion of seawater (SWI) into coastal aquifers is a major concern worldwide, affecting the quantity and quality of groundwater resources. The region of Saudi Arabia that lies along the eastern coast has been affected by SWI, making it crucial to accurately identify and monitor the affected areas. This investigation aimed to map the degree of seawater intrusion in a complex aquifer system in the study area using an integrated clustering analysis approach. The study collected 41 groundwater samples from wells penetrating multi-layered aquifers, and the samples were analyzed for physicochemical properties and major ions. Clustering analysis methods, including Hierarchical Clustering Analysis (double-clustering) (HCA-DC), K-mean (KMC), and fuzzy k-mean clustering (FKM), were employed to evaluate the spatial distribution and association of the groundwater properties. The results revealed that the analyzed GW samples were divided into four clusters with varying degrees of SWI. Clusters A, B, C, and D contained GW samples with very low (fsea of 1.9%), high (fsea of 14.9%), intermediate (fsea of 7.9%), and low (fsea of 5.2%) degrees of SWI, respectively. FKM clustering exhibited superior performance with a silhouette score of 0.83. Additionally, the study found a direct correlation between the degree of SWI and increased concentrations of boron, strontium, and iron, demonstrating SWI's impact on heavy metal levels. Notably, the boron concentration in cluster B, which endured high SWI, exceeded WHO guidelines. The study demonstrates the value of clustering analysis for accurately monitoring SWI and associated heavy metals. The findings can guide policies to mitigate SWI impacts and benefit groundwater-dependent communities. Further research can help develop effective strategies to mitigate SWI effects on groundwater quality and availability.

4.
Chemosphere ; 336: 139083, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37331666

RESUMO

Fluoride and nitrate contamination of groundwater is a major environmental issue in the world's arid and semiarid regions. This issue is severe in both developed and developing countries. This study aimed at assessing the concentration levels, contamination mechanisms, toxicity, and human health risks of NO3- and F- in the groundwater within the coastal aquifers of the eastern part of Saudi Arabia using a standard integrated approach. Most of the tested physicochemical properties of the groundwater exceeded their standard limits. The water quality index and synthetic pollution index evaluated the suitability of the groundwater and showed that all the samples have poor and unsuitable quality for drinking. The toxicity of F- was estimated to be higher than NO3-. Also, the health risk assessment revealed higher risks due to F- than NO3-. Younger populations had higher risks than elderly populations. For both F- and NO3-, the order of health risk was Infants > Children > Adults. Most of the samples posed medium to high chronic risks due to F- and NO3- ingestion. However, negligible health risks were obtained for potential dermal absorption of NO3-. Na-Cl and Ca-Mg-Cl water types predominate in the area. Pearson's correlation analysis, principal component analysis, regression models, and graphical plots were used to determine the possible sources of the water contaminants and their enrichment mechanisms. Geogenic and geochemical processes had greater impact he groundwater chemistry than anthropogenic activities. For the first time, these findings provide public knowledge on the overall water quality of the coastal aquifers and could help the inhabitants, water management authorities, and researchers to identify the groundwater sources that are most desirable for consumption and the human populations that are vulnerable to non-carcinogenic health risks.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Masculino , Adulto , Criança , Humanos , Idoso , Fluoretos/toxicidade , Fluoretos/análise , Nitratos/análise , Monitoramento Ambiental , Arábia Saudita , Poluentes Químicos da Água/análise , Água Subterrânea/química , Qualidade da Água , Compostos Orgânicos , Medição de Risco
5.
Heliyon ; 9(4): e15483, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37128320

RESUMO

Human health and the sustainability of the socioeconomic system are directly related to water quality. As anthropogenic activity becomes more intense, pollutants, particularly potentially harmful elements (PHEs), penetrate water systems and degrade water quality. The purpose of this study was to evaluate the safety of using groundwater for domestic and drinking purposes through oral and dermal exposure routes, as well as the potential health risks posed to humans in the Nnewi and Awka regions of Nigeria. The research involved the application of a combination of the National Sanitation Foundation Water Quality Index (NSFWQI), HERisk code, and hierarchical dendrograms. Additionally, we utilized the regulatory guidelines established by the World Health Organization and the Standard Organization of Nigeria to compare the elemental compositions of the samples. The physicochemical parameters and NSFWQI evaluation revealed that the majority of the samples were PHE-polluted. Based on the HERisk code, it was discovered that in both the Nnewi and Awka regions, risk levels are higher for people aged 1 to <11 and >65 than for people aged 16 to <65. Overall, it was shown that all age categories appeared to be more vulnerable to risks due to the consumption than absorption of PHEs, with Cd > Pb > Cu > Fe for Nnewi and Pb > Cd > Cu > Fe for water samples from Awka. Summarily, groups of middle age are less susceptible to possible health issues than children and elderly individuals. Hierarchical dendrograms and correlation analysis showed the spatio-temporal implications of the drinking groundwater quality and human health risks in the area. This research could help local government agencies make informed decisions on how to effectively safeguard the groundwater environment while also utilizing the groundwater resources sustainably.

6.
Chemosphere ; 331: 138726, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37116721

RESUMO

Due to the significant energy and economic losses brought on by the global oil spill, there has been an increased interest in oil-water separation. This study presents strong non-linear machine learning models (support vector regression (SVR) and Gaussian process regression (GPR)) with the Response surface method (RSM) to predict the oil flux and oil-water separation efficiency of wastewater using ceramic membrane technology. For the model development and prediction of oil flux (OF) and oil-water separation efficiency (OSE), oil concentration (mg/L), feed flow rate (mL/min), and pH were considered as input variables. The input variables are combined in three combinations to study the most contributing input features to the models' performance. Mean square error (MSE) and Nash-Sutcliffe coefficient efficiency (NSE) were used to assess the prediction performances of the developed models with the different number of input combinations considered in the study. For the two target variables (OF and OSE), GPR and SVR models were used to separately predict them. For OF, the SVR-2 [Combo-2] model (MSE = 0.9255 and NSE = 2.7976) performed better with higher prediction accuracy compared to GPR-2 [Combo-2] model (MSE = 0.763 and NSE = 6.437). In addition, for OSE, the GPR-3 [Combo-3] model (MSE = 0.995 and NSE = 0.5544) performed slightly better than SVR-3 [Combo-3] model (MSE = 0.992 and NSE = 0.8066). The results showed that the SVR model with the combo-2 and GPR-3 models for OF and OSE variables are the proposed models with the best performance and accuracy. This machine learning study will aid in better evaluating the function of materials such as ceramic in membrane performance features such as oil flux and rejection prediction, separation efficiency, water recovery, membrane fouling, and so on. As for academics and manufacturers, this machine learning (ML) strategy will boost performance and allow a better understanding of system governance.


Assuntos
Águas Residuárias , Purificação da Água , Água , Interações Hidrofóbicas e Hidrofílicas , Purificação da Água/métodos , Cerâmica
7.
Molecules ; 28(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049937

RESUMO

The degradation of groundwater (GW) quality due to seawater intrusion (SWI) is a major water security issue in water-scarce regions. This study aims to delineate the impact of SWI on the GW quality of a multilayered aquifer system in the eastern coastal region of Saudi Arabia. The physical and chemical properties of the GW were determined via field investigations and laboratory analyses. Irrigation indices (electrical conductivity (EC), potential salinity (PS), sodium adsorption ratio (SAR), Na%, Kelly's ratio (KR), magnesium adsorption ratio (MAR), and permeability index (PI)) and a SWI index (fsea) were obtained to assess the suitability of GW for irrigation. K-mean clustering, correlation analysis, and principal component analysis (PCA) were used to determine the relationship between irrigation hazard indices and the degree of SWI. The tested GW samples were grouped into four clusters (C1, C2, C3, and C4), with average SWI degrees of 15%, 8%, 5%, and 2%, respectively. The results showed that the tested GW was unsuitable for irrigation due to salinity hazards. However, a noticeable increase in sodium and magnesium hazards was also observed. Moreover, increasing the degree of SWI (fsea) was associated with increasing salinity, sodium, and magnesium, with higher values observed in the GW samples in cluster C1, followed by clusters C2, C3, and C4. The correlation analysis and PCA results illustrated that the irrigation indices, including EC, PS, SAR, and MAR, were grouped with the SWI index (fsea), indicating the possibility of using them as primary irrigation indices to reflect the impact of SWI on GW quality in coastal regions. The results of this study will help guide decision-makers toward proper management practices for SWI mitigation and enhancing GW quality for irrigation.

8.
Life (Basel) ; 13(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36983868

RESUMO

Antiretroviral therapy (ART) is the common hope for HIV/AIDS-treated patients. Total commitments from individuals and the entire community are the major challenges faced during treatment. This study investigated the progress of ART in the Federal Teaching Hospital in Gombe state, Nigeria by using various records of patients receiving treatment in the ART hospital unit. We combined artificial intelligence (AI)-based models and correspondence analysis (CA) techniques to predict and visualize the progress of ART from the beginning to the end. The AI models employed are artificial neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFISs) and support-vector machines (SVMs) and a classical linear regression model of multiple linear regression (MLR). According to the outcome of this study, ANFIS in both training and testing outperformed the remaining models given the R2 (0.903 and 0.904) and MSE (7.961 and 3.751) values, revealing that any increase in the number of years of taking ART medication will provide HIV/AIDS-treated patients with safer and elongated lives. The contingency results for the CA and the chi-square test did an excellent job of capturing and visualizing the patients on medication, which gave similar results in return, revealing there is a significant association between ART drugs and the age group, while the association between ART drugs and marital status (93.7%) explained a higher percentage of variation compared with the remaining variables.

9.
Sci Total Environ ; 858(Pt 2): 159697, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334664

RESUMO

The growing increase in groundwater (GW) salinization in the coastal aquifers has reached an alarming socio-economic menace in Saudi Arabia and various places globally due to several natural and anthropogenic activities. Hence, evaluating the GW salinization is paramount to safeguarding the water resources planning and management. This study presents three different scenarios viz.: real field investigation, experimental laboratory analysis (using ion chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS), etc.), and artificial intelligence (AI) based metaheuristic optimization (MO) algorithms in Saudi Arabia. The main purpose of this study is to validate the obtained experimental-based analysis using hybrid MO techniques comprising of adaptive neuro-fuzzy inference system (ANFIS) hybridized with genetic algorithm (GA), particle swarm optimization (PSO), and biogeography-based optimization (BBO) for identification of GW salinization in the coastal region of eastern Saudi Arabia. Additionally, ArcGIS 10.3 software generates the prediction map based on ANFIS-GA, ANFIS-PSO, and ANFIS-BBO. Feature selection was assessed using the PSO algorithm, and four indices evaluated the estimated models, namely, root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and standard deviation (SD). The simulated results are based on three variable input combinations, which showed that the ANFIS-PSO (MAE = 0.00439) algorithm had the highest accuracy (99 %), followed by the ANFIS-GA (MAE = 0.00767) and ANFIS-BBO (MAE = 0.0132) algorithms. Besides, Ca2+, Na+, Mg2+, and Cl- were the most influential parameters. The accuracy also demonstrated the potential reliability of MO algorithms based on spatial distribution mapping. The employed approach proved to be merit and reliable tool for water resources decision-makers in the coastal aquifer of Saudi Arabia. This approach is believed to improve water scarcity as one of the essential targets for Goal 6 of Sustainable Development Vision 2030 and the Kingdom in general.


Assuntos
Lógica Fuzzy , Água Subterrânea , Inteligência Artificial , Heurística , Arábia Saudita , Reprodutibilidade dos Testes , Algoritmos
10.
Molecules ; 27(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296433

RESUMO

Seawater intrusion (SWI) is the main threat to fresh groundwater (GW) resources in coastal regions worldwide. Early identification and delineation of such threats can help decision-makers plan for suitable management measures to protect water resources for coastal communities. This study assesses seawater intrusion (SWI) and GW salinization of the shallow and deep coastal aquifers in the Al-Qatif area, in the eastern region of Saudi Arabia. Field hydrogeological and hydrochemical investigations coupled with laboratory-based hydrochemical and isotopic analyses (18O and 2H) were used in this integrated study. Hydrochemical facies diagrams, ionic ratio diagrams, and spatial distribution maps of GW physical and chemical parameters (EC, TDS, Cl-, Br-), and seawater fraction (fsw) were generated to depict the lateral extent of SWI. Hydrochemical facies diagrams were mainly used for GW salinization source identification. The results show that the shallow GW is of brackish and saline types with EC, TDS, Cl-, Br- concentration, and an increasing fsw trend seaward, indicating more influence of SWI on shallow GW wells located close to the shoreline. On the contrary, deep GW shows low fsw and EC, TDS, Cl-, and Br-, indicating less influence of SWI on GW chemistry. Moreover, the shallow GW is enriched in 18O and 2H isotopes compared with the deep GW, which reveals mixing with recent water. In conclusion, the reduction in GW abstraction in the central part of the study area raised the average GW level by three meters. Therefore, to protect the deep GW from SWI and salinity pollution, it is recommended to implement such management practices in the entire region. In addition, continuous monitoring of deep GW is recommended to provide decision-makers with sufficient data to plan for the protection of coastal freshwater resources.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Fácies , Água Subterrânea/análise , Isótopos/análise , Salinidade , Arábia Saudita , Água do Mar/análise , Água/análise , Poluentes Químicos da Água/análise
11.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807465

RESUMO

Unconsolidated earthen surface materials can retain heavy metals originating from different sources. These metals are dangerous to humans as well as the immediate environment. This danger leads to the need to assess various geochemical conditions of the materials. In this study, the assessment of topsoil materials' contamination with heavy metals (HMs) was conducted. The material's representative spatial samples were taken from various sources: agricultural, industrial, and residential areas. The materials include topsoil, eolian deposits, and other unconsolidated earthen materials. The samples were analyzed using the ICP-OES. The obtained results based on the experimental procedure indicated that the average levels of the heavy metals were: As (1.21 ± 0.69 mg/kg), Ba (110.62 ± 262 mg/kg), Hg (0.08 ± 0.18 mg/kg), Pb (6.34 ± 14.55 mg/kg), Ni (8.95 ± 5.66 mg/kg), V (9.98 ± 6.08 mg/kg), Cd (1.18 ± 4.33 mg/kg), Cr (31.79 ± 37.9 mg/kg), Cu (6.76 ± 12.54 mg/kg), and Zn (23.44 ± 84.43 mg/kg). Subsequently, chemometrics modeling and a prediction of Cr concentration (mg/kg) were performed using three different modeling techniques, including two artificial intelligence (AI) techniques, namely, generalized neural network (GRNN) and Elman neural network (Elm NN) models, as well as a classical multivariate statistical technique (MST). The results indicated that the AI-based models have a superior ability in estimating the Cr concentration (mg/kg) than MST, whereby GRNN can enhance the performance of MST up to 94.6% in the validation step. The concentration levels of most metals were found to be within the acceptable range. The findings indicate that AI-based models are cost-effective and efficient tools for trace metal estimations from soil.


Assuntos
Metais Pesados , Poluentes do Solo , Solo , Inteligência Artificial , Quimiometria , Cromo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Modelos Químicos , Análise Multivariada , Redes Neurais de Computação , Arábia Saudita , Solo/química , Poluentes do Solo/análise
12.
Sci Rep ; 12(1): 10393, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729346

RESUMO

This study presents optimization and prediction of tribological behaviour of filled polytetrafluoroethylene (PTFE) composites using hybrid Taguchi and support vector regression (SVR) models. To achieve the optimization, Taguchi Deng was employed considering multiple responses and process parameters relevant to the tribological behaviour. Coefficient of friction (µ) and specific wear rate (Ks) were measured using pin-on-disc tribometer. In this study, load, grit size, distance and speed were the process parameters. An L27 orthogonal array was applied for the Taguchi experimental design. A set of optimal parameters were obtained using the Deng approach for multiple responses of µ and KS. Analysis of variance was performed to study the effect of individual parameters on the multiple responses. To predict µ and Ks, SVR was coupled with novel Harris Hawks' optimization (HHO) and swarm particle optimization (PSO) forming SVR-HHO and SVR-PSO models respectively, were employed. Four model evaluation metrics were used to appraise the prediction accuracy of the models. Validation results revealed enhancement under optimal test conditions. Hybrid SVR models indicated superior prediction accuracy to single SVR model. Furthermore, SVR-HHO outperformed SVR-PSO model. It was found that Taguchi Deng, SVR-PSO and SVR-HHO models led to optimization and prediction with low cost and superior accuracy.

13.
J Environ Manage ; 316: 115316, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35598454

RESUMO

It is difficult to predict and model with an accurate model the floods, that are one of the most destructive risks across the earth's surface. The main objective of this research is to show the prediction power of three ensemble algorithms with respect to flood susceptibility estimation. These algorithms are: Iterative Classifier Optimizer - Alternating Decision Tree - Frequency Ratio (ICO-ADT-FR), Iterative Classifier Optimizer - Deep Learning Neural Network - Frequency Ratio (ICO-DLNN-FR) and Iterative Classifier Optimizer - Multilayer Perceptron - Frequency Ratio (ICO-MLP-FR). The first stage of the manuscript consisted of the collection and processing of the geodatabase needed in the present study. The geodatabase comprises a number of 14 flood predictors and 132 known flood locations. The Correlation-based Feature Selection (CFS) method was used in order to assess the prediction capacity of the 14 predictors in terms of flood susceptibility estimation. The training and validation of the three ensemble models constitute the next stage of the scientific workflow. Several statistical metrics and ROC curve method were involved in the evaluation of the model's performance and accuracy. According to ROC curves all the models achieved high performances since their AUC had values above 0.89. ICO-DLNN-FR proved to be the most accurate model (AUC = 0.959). The outcomes of the study can be used to guide future flood risk management and sustainable land-use planning in the designated area.


Assuntos
Aprendizado Profundo , Inundações , Algoritmos , Sistemas de Informação Geográfica , Redes Neurais de Computação
14.
Environ Sci Pollut Res Int ; 29(24): 35841-35861, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35061183

RESUMO

Natural streams longitudinal dispersion coefficient (Kx) is an essential indicator for pollutants transport and its determination is very important. Kx is influenced by several parameters, including river hydraulic geometry, sediment properties, and other morphological characteristics, and thus its calculation is a highly complex engineering problem. In this research, three relatively explored machine learning (ML) models, including Random Forest (RF), Gradient Boosting Decision Tree (GTB), and XGboost-Grid, were proposed for the Kx determination. The modeling scheme on building the prediction matrix was adopted from the well-established literature. Several input combinations were tested for better predictability performance for the Kx. The modeling performance was tested based on the data division for the training and testing (70-30% and 80-20%). Based on the attained modeling results, XGboost-Grid reported the best prediction results over the training and testing phase compared to RF and GTB models. The development of the newly established machine learning model revealed an excellent computed-aided technology for the Kx simulation.


Assuntos
Aprendizado de Máquina , Rios , Poluição da Água , Estados Unidos , Poluição da Água/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-35055559

RESUMO

Reliable modeling of novel commutative cases of COVID-19 (CCC) is essential for determining hospitalization needs and providing the benchmark for health-related policies. The current study proposes multi-regional modeling of CCC cases for the first scenario using autoregressive integrated moving average (ARIMA) based on automatic routines (AUTOARIMA), ARIMA with maximum likelihood (ARIMAML), and ARIMA with generalized least squares method (ARIMAGLS) and ensembled (ARIMAML-ARIMAGLS). Subsequently, different deep learning (DL) models viz: long short-term memory (LSTM), random forest (RF), and ensemble learning (EML) were applied to the second scenario to predict the effect of forest knowledge (FK) during the COVID-19 pandemic. For this purpose, augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) unit root tests, autocorrelation function (ACF), partial autocorrelation function (PACF), Schwarz information criterion (SIC), and residual diagnostics were considered in determining the best ARIMA model for cumulative COVID-19 cases (CCC) across multi-region countries. Seven different performance criteria were used to evaluate the accuracy of the models. The obtained results justified both types of ARIMA model, with ARIMAGLS and ensemble ARIMA demonstrating superiority to the other models. Among the DL models analyzed, LSTM-M1 emerged as the best and most reliable estimation model, with both RF and LSTM attaining more than 80% prediction accuracy. While the EML of the DL proved merit with 96% accuracy. The outcomes of the two scenarios indicate the superiority of ARIMA time series and DL models in further decision making for FK.


Assuntos
COVID-19 , Aprendizado Profundo , Previsões , Humanos , Modelos Estatísticos , Pandemias , SARS-CoV-2
16.
Life (Basel) ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36676028

RESUMO

The emergence of health informatics opens new opportunities and doors for different disease diagnoses. The current work proposed the implementation of five different stand-alone techniques coupled with four different novel hybridized paradigms for the clinical prediction of hepatitis C status among patients, using both sociodemographic and clinical input variables. Both the visualized and quantitative performances of the stand-alone algorithms present the capability of the Gaussian process regression (GPR), Generalized neural network (GRNN), and Interactive linear regression (ILR) over the Support Vector Regression (SVR) and Adaptive neuro-fuzzy inference system (ANFIS) models. Hence, due to the lower performance of the stand-alone algorithms at a certain point, four different novel hybrid data intelligent algorithms were proposed, including: interactive linear regression-Gaussian process regression (ILR-GPR), interactive linear regression-generalized neural network (ILR-GRNN), interactive linear regression-Support Vector Regression (ILR-SVR), and interactive linear regression-adaptive neuro-fuzzy inference system (ILR-ANFIS), to boost the prediction accuracy of the stand-alone techniques in the clinical prediction of hepatitis C among patients. Based on the quantitative prediction skills presented by the novel hybridized paradigms, the proposed techniques were able to enhance the performance efficiency of the single paradigms up to 44% and 45% in the calibration and validation phases, respectively.

17.
In Silico Pharmacol ; 9(1): 31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928008

RESUMO

In this article, three data-driven approaches were explored, including two artificial intelligence (AI) based models namely; Extreme Learning Machine (ELM) and Hammerstein-Weiner (HW) models and a trivial linear model namely; multilinear regression (MLR). In this context, the models were developed using the onset of diarrhoea, the total number of wet faeces, total number of faeces, weight of intestinal content (g) and length of the small intestine (cm) as the independent variables. In contrast, distance travelled by charcoal meal (C) and volume of intestinal content (I) were considered as the dependent variables for the prediction of the intestinal hypermotility and secretory inhibitory effects of the methanol leaf extract of Combretum hypopilinum (MECH). Three different performance indicators including; mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE) and Root mean square error (RMSE) were employed in this research to calculate and determine the performance skills of the models. The obtained results indicated the reliable capability of ELM and HW over MLR model having NSE-values higher than 0.90 in both the calibration and verification stages. The results further demonstrated that, in terms of MAPE and RMSE, ELM and HW models showed higher performance efficiency than the MLR model. Even though HW outperformed the ELM and MLR models in the prediction of I. Whereas, ELM outperformed HW and MLR models in the prediction of C. Overall; the results proved the satisfactory ability of the AI-based models (HW and ELM) for modelling the Intestinal hypermotility and secretory inhibitory effects of MECH.

18.
Water Sci Technol ; 78(10): 2064-2076, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30629534

RESUMO

In the present study, three different artificial intelligence based non-linear models, i.e. feed forward neural network (FFNN), adaptive neuro fuzzy inference system (ANFIS), support vector machine (SVM) approaches and a classical multi-linear regression (MLR) method were applied for predicting the performance of Nicosia wastewater treatment plant (NWWTP), in terms of effluent biological oxygen demand (BODeff), chemical oxygen demand (CODeff) and total nitrogen (TNeff). The daily data were used to develop single and ensemble models to improve the prediction ability of the methods. The obtained results of single models proved that, ANFIS model provides effective outcomes in comparison with single models. In the ensemble modeling, simple averaging ensemble, weighted averaging ensemble and neural network ensemble techniques were proposed subsequently to improve the performance of the single models. The results showed that in prediction of BODeff, the ensemble models of simple averaging ensemble (SAE), weighted averaging ensemble (WAE) and neural network ensemble (NNE), increased the performance efficiency of artificial intelligence (AI) modeling up to 14%, 20% and 24% at verification phase, respectively, and less than or equal to 5% for both CODeff and TNeff in calibration phase. This shows that NNE model is more robust and reliable ensemble method for predicting the NWWTP performance due to its non-linear averaging kernel.


Assuntos
Inteligência Artificial , Eliminação de Resíduos Líquidos/métodos , Lógica Fuzzy , Modelos Lineares , Redes Neurais de Computação , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...