Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1382289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638827

RESUMO

Pseudomonas aeruginosa belongs to the critical pathogens that represent a global public health problem due to their high rate of resistance as listed by WHO. P. aeruginosa can result in many nosocomial infections especially in individuals with compromised immune systems. Attenuating virulence factors by interference with quorum sensing (QS) systems is a promising approach to treat P. aeruginosa-resistant infections. Thymoquinone is a natural compound isolated from Nigella sativa (black seed) essential oil. In this study, the minimum inhibitory concentration of thymoquinone was detected followed by investigating the antibiofilm and antivirulence activities of the subinhibitory concentration of thymoquinone against P. aeruginosa PAO1. The effect of thymoquinone on the expression of QS genes was assessed by quantitative real-time PCR, and the protective effect of thymoquinone against the pathogenesis of PAO1 in mice was detected by the mouse survival test. Thymoquinone significantly inhibited biofilm, pyocyanin, protease activity, and swarming motility. At the molecular level, thymoquinone markedly downregulated QS genes lasI, lasR, rhlI, and rhlR. Moreover, thymoquinone could protect mice from the pathologic effects of P. aeruginosa increasing mouse survival from 20% to 100%. In conclusion, thymoquinone is a promising natural agent that can be used as an adjunct therapeutic agent with antibiotics to attenuate the pathogenicity of P. aeruginosa.


Assuntos
Benzoquinonas , Biofilmes , Pseudomonas aeruginosa , Animais , Camundongos , Virulência/genética , Percepção de Quorum , Fatores de Virulência/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo
2.
Front Pharmacol ; 15: 1366459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533260

RESUMO

The development of resistance to carbapenems in Klebsiella pneumoniae due to the production of metallo-ß-lactamases (MBLs) is a critical public health problem because carbapenems are the last-resort drugs used for treating severe infections of extended-spectrum ß-lactamases (ESBLs) producing K. pneumoniae. Restoring the activity of carbapenems by the inhibition of metallo-ß-lactamases is a valuable approach to combat carbapenem resistance. In this study, two well-characterized clinical multidrug and carbapenem-resistant K. pneumoniae isolates were used. The sub-inhibitory concentrations of pantoprazole and the well-reported metallo-ß-lactamase inhibitor captopril inhibited the hydrolytic activities of metallo-ß-lactamases, with pantoprazole having more inhibiting activities. Both drugs, when used in combination with meropenem, exhibited synergistic activities. Pantoprazole could also downregulate the expression of the metallo-ß-lactamase genes bla NDM and bla VIM. A docking study revealed that pantoprazole could bind to and chelate zinc ions of New Delhi and Verona integron-encoded MBL (VIM) enzymes with higher affinity than the control drug captopril and with comparable affinity to the natural ligand meropenem, indicating the significant inhibitory activity of pantoprazole against metallo-ß-lactamases. In conclusion, pantoprazole can be used in combination with meropenem as a new strategy for treating serious infections caused by metallo-ß-lactamases producing K. pneumoniae.

3.
BMC Microbiol ; 24(1): 54, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341568

RESUMO

BACKGROUND: Candida albicans is the most common fungus that causes vaginal candidiasis in immunocompetent women and catastrophic infections in immunocompromised patients. The treatment of such infections is hindered due to the increasing emergence of resistance to azoles in C. albicans. New treatment approaches are needed to combat candidiasis especially in the dwindled supply of new effective and safe antifungals. The resistance to azoles is mainly attributed to export of azoles outside the cells by means of the efflux pump that confers cross resistance to all azoles including fluconazole (FLC). OBJECTIVES: This study aimed to investigate the possible efflux pump inhibiting activity of fusidic acid (FA) in C. albicans resistant isolates and the potential use of Fusidic acid in combination with fluconazole to potentiate the antifungal activity of fluconazole to restore its activity in the resistant C. albicans isolates. METHODS: The resistance of C. albicans isolates was assessed by determination of minimum inhibitory concentration. The effect of Fusidic acid at sub-inhibitory concentration on efflux activity was assayed by rhodamine 6G efflux assay and intracellular accumulation. Mice model studies were conducted to evaluate the anti-efflux activity of Fusidic acid and its synergistic effects in combination with fluconazole. Impact of Fusidic acid on ergosterol biosynthesis was quantified. The synergy of fluconazole when combined with Fusidic acid was investigated by determination of minimum inhibitory concentration. The cytotoxicity of Fusidic acid was tested against erythrocytes. The effect of Fusidic acid on efflux pumps was tested at the molecular level by real-time PCR and in silico study. In vivo vulvovaginitis mice model was used to confirm the activity of the combination in treating vulvovaginal candidiasis. RESULTS: Fusidic acid showed efflux inhibiting activity as it increased the accumulation of rhodamine 6G, a substrate for ABC-efflux transporter, and decreased its efflux in C. albicans cells. The antifungal activity of fluconazole was synergized when combined with Fusidic acid. Fusidic acid exerted only minimal cytotoxicity on human erythrocytes indicating its safety. The FA efflux inhibitory activity could be owed to its ability to interfere with efflux protein transporters as revealed by docking studies and downregulation of the efflux-encoding genes of both ABC transporters and MFS superfamily. Moreover, in vivo mice model showed that using fluconazole-fusidic acid combination by vaginal route enhanced fluconazole antifungal activity as shown by lowered fungal burden and a negligible histopathological change in vaginal tissue. CONCLUSION: The current findings highlight FA's potential as a potential adjuvant to FLC in the treatment of vulvovaginal candidiasis.


Assuntos
Candidíase Vulvovaginal , Candidíase , Humanos , Feminino , Animais , Camundongos , Fluconazol/farmacologia , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Candidíase Vulvovaginal/tratamento farmacológico , Ácido Fusídico/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Farmacorresistência Fúngica , Candida albicans , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Azóis/farmacologia , Testes de Sensibilidade Microbiana
4.
Microorganisms ; 11(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37894078

RESUMO

The problem of antibiotic resistance is a global critical public health concern. In light of the threat of returning to the pre-antibiotic era, new alternative approaches are required such as quorum-sensing (QS) disruption and virulence inhibition, both of which apply no discernible selective pressure on bacteria, therefore mitigating the potential for the development of resistant strains. Bearing in mind the significant role of QS in orchestrating bacterial virulence, disrupting QS becomes essential for effectively diminishing bacterial virulence. This study aimed to assess the potential use of sub-inhibitory concentration (0.25 mg/mL) of glyceryl trinitrate (GTN) to inhibit virulence in Serratia marcescens and Pseudomonas aeruginosa. GTN could decrease the expression of virulence genes in both tested bacteria in a significant manner. Histopathological study revealed the ability of GTN to alleviate the congestion in hepatic and renal tissues of infected mice and to reduce bacterial and leukocyte infiltration. This study recommends the use of topical GTN to treat topical infection caused by P. aeruginosa and S. marcescens in combination with antibiotics.

5.
BMC Microbiol ; 23(1): 229, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608306

RESUMO

INTRODUCTION: The emergence of multidrug-resistant Klebsiella pneumoniae in hospitals represents a serious threat to public health. Infections caused by Klebsiella pneumoniae are widespread in healthcare institutions, mainly pneumonia, bloodstream infections, and infections affecting neonates in intensive care units; so, it is necessary to combat this pathogen with new strategies. Targeting virulence factors necessary to induce host damage and disease is a new paradigm for antimicrobial therapy with several potential benefits that could lead to decreased resistance. BACKGROUND: The influence of metformin, N-acetylcysteine, and secnidazole on Klebsiella pneumoniae virulence factors production was tested. The production of Klebsiella pneumoniae virulence factors such as biofilm formation, urease, proteases, hemolysins, and tolerance to oxidative stress was evaluated phenotypically using sub-inhibitory concentration (1/8 MIC) of metformin, N-acetylcysteine, and secnidazole. For more confirmation, qRT-PCR was used to assess the relative expression level of rmpA, wcaG, fimH-1, mrkD, ureA, and khe genes regulating virulence factors production. RESULTS: Metformin, N-acetylcysteine, and secnidazole were all found to have a powerful inhibitory effect on the production of virulence factors phenotypically. Our results showed a significant reduction in the expression level of rmpA, wcaG, fimH-1, mrkD, ureA, and khe genes. Furthermore, the tested drugs were investigated in vivo to inform their ability to protect mice against Klebsiella pneumoniae pathogenesis. CONCLUSIONS: Metformin, N-acetylcysteine, and secnidazole inhibited the virulence of Klebsiella pneumoniae. Besides combating resistant Klebsiella pneumoniae, the tested drugs could also serve as an adjuvant to traditional antibiotics.


Assuntos
Acetilcisteína , Metformina , Animais , Camundongos , Virulência , Acetilcisteína/farmacologia , Klebsiella pneumoniae/genética , Fatores de Virulência/genética
6.
Biomedicines ; 11(5)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37239113

RESUMO

The repurposing of drugs is one of the most competent strategies for discovering new antimicrobial agents. Vildagliptin is a dipeptidyl peptidase-4 inhibitor (DPI-4) that is used effectively in combination with metformin to control blood glucose levels in diabetic patients. This study was designed to evaluate the anti-virulence activities of this combination against one of the most clinically important pathogens, Pseudomonas aeruginosa. The current findings show a significant ability of the vildagliptin-metformin combination to diminish biofilm formation, bacterial motility, and the production of virulent extracellular enzymes and pyocyanin pigment. Furthermore, this drug combination significantly increased the susceptibility of P. aeruginosa to oxidative stress, indicating immunity enhancement in the eradication of bacterial cells. In compliance with the in vitro findings, the histopathological photomicrographs of mice showed a considerable protective effect of the metformin-vildagliptin combination against P. aeruginosa, revealing relief of inflammation due to P. aeruginosa-induced pathogenesis. P. aeruginosa mainly employs quorum sensing (QS) systems to control the production of its huge arsenal of virulence factors. The anti-virulence activities of the metformin-vildagliptin combination can be interrupted by the anti-QS activities of both metformin and vildagliptin, as both exhibited a considerable affinity to QS receptors. Additionally, the metformin-vildagliptin combination significantly downregulated the expression of the main three QS-encoding genes in P. aeruginosa. These findings show the significant anti-virulence activities of metformin-vildagliptin at very low concentrations (10, 1.25 mg/mL, respectively) compared to the concentrations (850, 50 mg/mL, respectively) used to control diabetes.

7.
Res Microbiol ; 174(7): 104084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37247797

RESUMO

The high incidence of persistent multidrug resistant bacterial infections is a worldwide public health burden. Alternative strategies are required to deal with such issue including the use of drugs with anti-virulence activity. The application of nanotechnology to develop advanced Nano-materials that target quorum sensing regulated virulence factors is an attractive approach. Synthesis of ascorbic acid Nano-emulsion (ASC-NEs) and assessment of its activity in vitro against the virulence factors and its protective ability against pathogenesis as well as the effect against expression of quorum sensing genes of Pseudomonas aeruginosa and Staphylococcus aureus isolates. Ascorbic acid Nano-emulsion was characterized by DLS Zetasizer Technique, Zeta potential; Transmission Electron Microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR). The antibacterial activity of ASC-NEs was tested by the broth microdilution method and the activity of their sub-MIC against the expression of quorum sensing controlled virulence was investigated using phenotypic experiments and RT-PCR. The protective activity of ASC-NEs against P. aeruginosa as well as S. aureus pathogenesis was tested in vivo. Phenotypically, ASC-NEs had strong virulence inhibitory activity against the tested bacteria. The RT-PCR experiment showed that it exhibited significant QS inhibitory activity. The in vivo results showed that ASC-NEs protected against staphylococcal infection, however, it failed to protect mice against Pseudomonal infection. These results suggest the promising use of nanoformulations against virulence factors in multidrug resistant P. aeruginosa and S. aureus. However, further studies are required concerning the potential toxicity, clearance and phamacokinetics of the nanoformulations.

8.
Biology (Basel) ; 12(4)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37106705

RESUMO

Protecting food from bacterial contamination is crucial for ensuring its safety and avoiding foodborne illness. Serratia marcescens is one of the food bacterial contaminants that can form biofilms and pigments that spoil the food product and could cause infections and illness to the consumer. Food preservation is essential to diminish such bacterial contaminants or at least reduce their pathogenesis; however, it should not affect food odor, taste, and consistency and must be safe. Sodium citrate is a well-known safe food additive and the current study aims to evaluate its anti-virulence and anti-biofilm activity at low concentrations against S. marcescens. The anti-virulence and antibiofilm activities of sodium citrate were evaluated phenotypically and genotypically. The results showed the significant effect of sodium citrate on decreasing the biofilm formation and other virulence factors, such as motility and the production of prodigiosin, protease, and hemolysins. This could be owed to its downregulating effect on the virulence-encoding genes. An in vivo investigation was conducted on mice and the histopathological examination of isolated tissues from the liver and kidney of mice confirmed the anti-virulence activity of sodium citrate. In addition, an in silico docking study was conducted to evaluate the sodium citrate binding ability to S. marcescens quorum sensing (QS) receptors that regulates its virulence. Sodium citrate showed a marked virtual ability to compete on QS proteins, which could explain sodium citrate's anti-virulence effect. In conclusion, sodium citrate is a safe food additive and can be used at low concentrations to prevent contamination and biofilm formation by S. marcescens and other bacteria.

9.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500623

RESUMO

The emergence of resistant microbes threatens public health on our planet, and the emergence of resistant bacteria against the most commonly used antibiotics necessitates urgent alternative therapeutic options. One way to fight resistant microbes is to design new antimicrobial agents, however, this approach takes decades of research. An alternative or parallel approach is to target the virulence of bacteria with natural or synthetic agents. Active constituents from medicinal plants represent a wide library to screen for natural anti-virulence agents. Caraway is used as a traditional spice and in some medicinal applications such as carminative, antispasmodic, appetizer, and expectorant. Caraway essential oil is rich in terpenes that were previously reported to have antimicrobial activities. In our study, we tested the caraway essential oil in sub-inhibitory concentration as a virulence agent against the Gram-negative bacteria Pseudomonas aeruginosa. Caraway essential oil in sub-inhibitory concentration dramatically blocked protease activity, pyocyanin production, biofilm formation, and quorum sensing activity of P. aeruginosa. The gas chromatography-mass spectroscopy (GC-MS) profile of caraway fruit oil identified 13 compounds representing 85.4% of the total oil components with carvone and sylvestrene as the main constituents. In conclusion, caraway essential oil is a promising virulence-attenuating agent that can be used against topical infections caused by P. aeruginosa.


Assuntos
Óleos Voláteis , Pseudomonas aeruginosa , Óleos Voláteis/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Biofilmes , Fatores de Virulência , Percepção de Quorum , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias
10.
Microorganisms ; 10(12)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36557708

RESUMO

Bacteria communicate with each other using quorum sensing (QS) which works in an inducer/receptor manner. QS plays the main role in orchestrating diverse bacterial virulence factors. Pseudomonas aeruginosa is one of the most clinically important bacterial pathogens that can cause infection in almost all body tissues. Besides its efficient capability to develop resistance to different antibiotics, P. aeruginosa acquires a huge arsenal of virulence factors that are controlled mainly by QS. Challenging QS with FDA-approved drugs and natural products was proposed as a promising approach to mitigate bacterial virulence enabling the host immunity to complete the eradication of bacterial infection. The present study aims to evaluate the dipeptidase inhibitor-4 inhibitor hypoglycemic linagliptin anti-QS and anti-virulence activities against P. aeruginosa in vitro, in vivo, and in silico. The current results revealed the significant ability to diminish the production of protease and pyocyanin, motility, and biofilm formation in P. aeruginosa. Furthermore, the histopathological examination of liver and kidney tissues of mice injected with linagliptin-treated bacteria showed an obvious reduction of pathogenesis. Linagliptin downregulation to QS-encoding genes, besides the virtual ability to interact with QS receptors, indicates its anti-QS activities. In conclusion, linagliptin is a promising anti-virulence and anti-QS candidate that can be used solely or in combination with traditional antimicrobial agents in the treatment of P. aeruginosa aggressive infections.

11.
BMC Microbiol ; 22(1): 268, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36348266

RESUMO

BACKGROUND: Infections affecting neonates caused by Staphylococcus aureus are widespread in healthcare facilities; hence, novel strategies are needed to fight this pathogen. In this study, we aimed to investigate the effectiveness of the FDA-approved medications ascorbic acid, dexamethasone, and sodium bicarbonate to reduce the virulence of the resistant Staphylococcus aureus bacteria that causes neonatal sepsis and seek out suitable alternatives to the problem of multi-drug resistance. METHODS: Tested drugs were assessed phenotypically and genotypically for their effects on virulence factors and virulence-encoding genes in Staphylococcus aureus. Furthermore, drugs were tested in vivo for their ability to reduce Staphylococcus aureus pathogenesis. RESULTS: Sub-inhibitory concentrations (1/8 MIC) of ascorbic acid, dexamethasone, and sodium bicarbonate reduced the production of Staphylococcus aureus virulence factors, including biofilm formation, staphyloxanthin, proteases, and hemolysin production, as well as resistance to oxidative stress. At the molecular level, qRT-PCR was used to assess the relative expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes regulating virulence factors production and showed a significant reduction in the relative expression levels of all the tested genes. CONCLUSIONS: The current findings reveal that ascorbic acid, dexamethasone, and sodium bicarbonate have strong anti-virulence effects against Staphylococcus aureus. Thus, suggesting that they might be used as adjuvants to treat infections caused by Staphylococcus aureus in combination with conventional antimicrobials or as alternative therapies.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Sepse Neonatal , Infecções Estafilocócicas , Recém-Nascido , Humanos , Staphylococcus aureus , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/uso terapêutico , Ácido Ascórbico/farmacologia , Biofilmes , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Fatores de Virulência/genética , Dexametasona/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
12.
Int J Dent ; 2022: 6254656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847346

RESUMO

Introduction: Because of the close contact between maxillary sinus and maxillary posterior teeth, procedural errors such as perforation of the sinus may occur during surgical intervention resulting in oroantral communication, which if not corrected, would develop into a fistula. The aim of this study was to evaluate the relationship between maxillary posterior teeth and maxillary sinus floor in a population of the western area of Saudi Arabia, and if age, gender, and size may affect such distance. Materials and Methods: This retrospective study evaluated 539 cone-beam computed tomography (CBCT) radiographs of patients over 20 years of age. Patients were divided into four groups according to age: group I (20-30 years), group II (31-40 years), group III (41-50 years), and group IV (more than 50 years). From coronal and sagittal images of CBCT, the vertical distance between the posterior maxillary root and the maxillary sinus was measured and classified according to its proximity to the maxillary sinus. Results: Gender and size did not significantly affect the distance between maxillary posterior root and maxillary sinus. However, there was a significant increase in this distance with increased age. Mesiobuccal root of the second molar was the nearest root to the maxillary sinus (0.8 ± 1.62, p < 0.001), while the buccal root of the first premolar was the farthest root (5.39 ± 3.26, p < 0.001). Conclusion: Regarding the population of this study, the buccal roots of the second molars are the closest to the sinus floor. Complications associated with maxillary molar extraction and implantation are greater at a younger age. Because the distance between posterior maxillary teeth and maxillary sinus was mostly type 1 (0-2 mm), clinicians are advised to perform CBCT to get a better understanding of the relationship between maxillary posterior roots and maxillary sinus before surgical intervention.

13.
PLoS One ; 17(7): e0272417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35905077

RESUMO

BACKGROUND AND OBJECTIVES: Staphylococcus aureus is an opportunistic pathogen that causes wide range of nosocomial and community-acquired infections which have spread worldwide leading to an urgent need for developing effective anti-staphylococcal agents. Efflux is an important resistance mechanism that bacteria used to fight the antimicrobial action. This study aimed to investigate the efflux mechanism in S. aureus and assess diclofenac, domperidone, glyceryl trinitrate and metformin as potential efflux pump inhibitors that can be used in combination with antibiotics for treating topical infections caused by S. aureus. MATERIALS AND METHODS: Efflux was detected qualitatively by the ethidium bromide Cart-Wheel method followed by investigating the presence of efflux genes by polymerase chain reaction. Twenty-six isolates were selected for further investigation of efflux by Cart-Wheel method in absence and presence of tested compounds followed by quantitative efflux assay. Furthermore, antibiotics minimum inhibitory concentrations in absence and presence of tested compounds were determined. The effects of tested drugs on expression levels of efflux genes norA, fexA and tetK were determined by quantitative real time-polymerase chain reaction. RESULTS: Efflux was found in 65.3% of isolates, the prevalence of norA, tetK, fexA and msrA genes were 91.7%, 77.8%, 27.8% and 6.9%. Efflux assay revealed that tested drugs had potential efflux inhibitory activities, reduced the antibiotic's MICs and significantly decreased the relative expression of efflux genes. CONCLUSION: Diclofenac sodium, domperidone and glyceryl trinitrate showed higher efflux inhibitory activities than verapamil and metformin. To our knowledge, this is the first report that shows that diclofenac sodium, glyceryl trinitrate and domperidone have efflux pump inhibitory activities against S. aureus.


Assuntos
Metformina , Infecções Estafilocócicas , Antibacterianos/uso terapêutico , Proteínas de Bactérias/metabolismo , Diclofenaco/farmacologia , Domperidona/uso terapêutico , Humanos , Metformina/uso terapêutico , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Nitroglicerina/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
14.
World J Microbiol Biotechnol ; 38(7): 119, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35644864

RESUMO

Long-term antibiotic treatment results in the spread of multi-drug resistance in Pseudomonas aeruginosa that complicates treatment. Anti-virulence agents can be viewed as alternative options that cripple virulence factors of the bacteria to facilitate their elimination by the host immunity. The use of nanoparticles in the inhibition of P. aeruginosa virulence factors is a promising strategy. This study aims to study the effect of metformin (MET), metformin nano emulsions (MET-NEs), silver metformin nano emulsions (Ag-MET-NEs) and silver nanoparticles (AgNPs) on P. aeruginosa virulence factors' expression. The phenotypic results showed that MET-NEs had the highest virulence inhibitory activity. However, concerning RT-PCR results, all tested agents significantly decreased the expression of quorum sensing regulatory genes of P. aeruginosa; lasR, lasI, pqsA, fliC, exoS and pslA, with Ag-MET-NEs being the most potent one, however, it failed to protect mice from P. aeruginosa pathogenesis. MET-NEs showed the highest protective activity against pseudomonal infection in vivo. Our findings support the promising use of nano formulations particularly Ag-MET-NEs as an alternative against multidrug resistant pseudomonal infections via inhibition of virulence factors and quorum sensing gene expression.


Assuntos
Nanopartículas Metálicas , Metformina , Animais , Emulsões , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Camundongos , Pseudomonas aeruginosa , Prata/farmacologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
ACS Omega ; 7(23): 19879-19891, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35721927

RESUMO

Biofilms facilitate the pathogenesis of life-threatening Pseudomonas aeruginosa infections by coating mucosal surfaces or invasive devices and offer protection from antimicrobial therapy and the host immune response, thus increasing mortality rates and financial burden. Herein, new hybrid N-acylcysteines (NAC) incorporating selected acyl groups from organic acids and their derivatives, which are capable of quenching pathogen quorum sensing (QS) systems, were designed and their antibiofilm activity and anti-QS were evaluated. N-acylcysteines (4a-h) were synthesized and characterized by 1H NMR and 13C NMR, and their purity was confirmed by elemental analyses. N-(4-Hydroxy-3,5-dimethoxybenzoyl)-l-cysteine (4d) and N-(4-methoxybenzoyl)-l-cysteine (4h) showed a higher antibiofilm activity against PAO1 biofilms than the rest of the targets and the standard NAC. They showed 83 and 82% inhibition of biofilms at 5 mM and eradicated mature biofilms at 20 mM concentrations (NAC biofilm inhibition = 66% at 10 mM and minimum biofilm eradication concentration = 40 mM). This was confirmed via visualizing adherent biofilm cells on catheter pieces using scanning electron microscopy. In the same vein, both 4d and 4h showed the highest docking score with the QS signal receptor protein LasR (-7.8), which was much higher than that of NAC (-5) but less than the score of the natural agonist N-(3-oxododecanoyl)-l-homoserine (OdDHL) (-8.5). Target 4h (5 mM) decreased the expression of quorum sensing encoding genes in P. aeruginosa PAO1 strain by 53% for pslA, 47% for lasI and lasR, and 29% for filC, lowered PAO1 pyocyanin production by 76.43%, completely blocked the proteolytic activity of PAO1, and did not affect PAO1 cell viability. Targets 4d and 4h may find applications for the prevention and treatment of biofilm-mediated P. aeruginosa local infections of the skin, eye, and wounds. N-(4-Methoxybenzoyl)-l-cysteine 4h is a promising dual-acting matrix disruptive and anti-QS antibiofilm agent for further investigation and optimization.

16.
AMB Express ; 12(1): 84, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35771288

RESUMO

Staphylococcus aureus is a prevalent etiological agent of health care associated and community acquired infections. Antibiotic abuse resulted in developing multidrug resistance in S. aureus that complicates treatment of infections. Targeting bacterial virulence using FDA approved medication offers an alternative to the antibiotics with no stress on bacterial viability. Using nanomaterials as anti-virulence agent against S. aureus virulence factors is a valuable approach. This study aims to investigate the impact of metformin (MET), metformin nano (MET-Nano), silver metformin nano structure (Ag-MET-Ns) and silver nanoparticles (AgNPs) on S. aureus virulence and pathogenicity. The in vitro results showed a higher inhibitory activity against S. aureus virulence factors with both MET-Nano and Ag-MET-Ns treatment. However, genotypically, it was found that except for agrA and icaR genes that are upregulated, the tested agents significantly downregulated the expression of crtM, sigB, sarA and fnbA genes, with Ag-MET-Ns being the most efficient one. MET-Nano exhibited the highest protection against S. aureus infection in mice. These data indicate the promising anti-virulence activity of nanoformulations especially Ag-MET-Ns against multidrug resistant S. aureus by inhibiting quorum sensing signaling system.

17.
Microorganisms ; 10(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35630488

RESUMO

The development of bacterial resistance is an insistent global health care issue, especially in light of the dwindled supply of new antimicrobial agents. This mandates the development of new innovative approaches to overcome the resistance development obstacle. Mitigation of bacterial virulence is an interesting approach that offers multiple advantages. Employing safe chemicals or drugs to mitigate bacterial virulence is an additive advantage. In the current study, the in vitro antivirulence activities of citrate were evaluated. Significantly, sodium citrate inhibited bacterial biofilm formation at sub-MIC concentrations. Furthermore, sodium citrate decreased the production of virulence factors protease and pyocyanin and diminished bacterial motility. Quorum sensing (QS) is the communicative system that bacterial cells utilize to communicate with each other and regulate the virulence of the host cells. In the present study, citrate in silico blocked the Pseudomonas QS receptors and downregulated the expression of QS-encoding genes. In conclusion, sodium citrate showed a significant ability to diminish bacterial virulence in vitro and interfered with QS; it could serve as a safe adjuvant to traditional antibiotic treatment for aggressive resistant bacterial infections such as Pseudomonas aeruginosa infections.

18.
Biomedicines ; 10(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35625906

RESUMO

The development of bacterial resistance to traditional antibiotics constitutes an emerging public health issue. Promising approaches have been innovated to conquer bacterial resistance, and targeting bacterial virulence is one of these approaches. Bacterial virulence mitigation offers several merits, as antivirulence agents do not affect the growth of bacteria and hence do not induce bacteria to develop resistance. In this direction, numerous drugs have been repurposed as antivirulence agents prior to their clinical use alone or in combination with traditional antibiotics. Quorum sensing (QS) plays a key role in controlling bacterial virulence. In the current study, dipeptidase inhibitor-4 (DPI-4) antidiabetic gliptins were screened for their antivirulence and anti-quorum sensing (anti-QS) activities against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Upon assessing their antibiofilm activities, the ten tested gliptins significantly diminished biofilm formation. In particular, sitagliptin exhibited the most efficient antibiofilm activity, so it was chosen as a representative of all gliptins to further investigate its antivirulence activity. Sitagliptin significantly protected mice from P. aeruginosa and S. aureus pathogenesis. Furthermore, sitagliptin downregulated QS-encoding genes in P. aeruginosa and S. aureus. To test the anti-QS activities of gliptins, a detailed molecular docking study was conducted to evaluate the gliptins' binding affinities to P. aeruginosa and S. aureus QS receptors, which helped explain the anti-QS activities of gliptins, particularly sitagliptin and omarigliptin. In conclusion, this study evaluates the possible antivirulence and anti-QS activities of gliptins that could be promising novel candidates for the treatment of aggressive Gram-negative or -positive bacterial infections either alone or as adjuvants to other antibiotics.

19.
Pathogens ; 11(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35056005

RESUMO

Hepatitis C virus (HCV) is one of the most epidemic viral infections in the world. Three-quarters of individuals infected with HCV become chronic. As a consequence of persistent inflammation, a considerable percentage of chronic patients progress to liver fibrosis, cirrhosis, and finally hepatocellular carcinoma. Cytokines, which are particularly produced from T-helper cells, play a crucial role in immune protection against HCV and the progression of the disease as well. In this study, the role of interleukins IL-33, IL-17, and IL-25 in HCV patients and progression of disease from chronicity to hepatocellular carcinoma will be characterized in order to use them as biomarkers of disease progression. The serum levels of the tested interleukins were measured in patients suffering from chronic hepatitis C (CHC), hepatocellular carcinoma (HCC), and healthy controls (C), and their levels were correlated to the degree of liver fibrosis, liver fibrosis markers and viral load. In contrast to the IL-25 serum level, which increased in patients suffering from HCC only, the serum levels of both IL-33 and IL-17 increased significantly in those patients suffering from CHC and HCC. In addition, IL-33 serum level was found to increase by liver fibrosis progression and viral load, in contrast to both IL-17 and IL-25. Current results indicate a significant role of IL-33 in liver inflammation and fibrosis progress in CHC, whereas IL-17 and IL-25 may be used as biomarkers for the development of hepatocellular carcinoma.

20.
Braz J Microbiol ; 53(1): 1-18, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34773629

RESUMO

Staphylococcus aureus is a primary cause of hospital and community-acquired infections. With the emergence of multidrug-resistant S. aureus strains, there is a need for new drugs discovery. Due to the poor supply of new antimicrobials, targeting virulence of S. aureus may generate weaker selection for resistant strains, anti-virulence agents disarm the pathogen instead of killing it. In this study, the ability of the FDA-approved drugs domperidone, candesartan, and miconazole as inhibitors of S. aureus virulence was investigated. The effect of tested drugs was evaluated against biofilm formation, lipase, protease, hemolysin, and staphyloxanthin production by using phenotypic and genotypic methods. At sub-inhibitory concentrations, candesartan, domperidone, and miconazole showed a significant inhibition of hemolysin (75.8-96%), staphyloxanthin (81.2-85%), lipase (50-65%), protease (40-64%), and biofilm formation (71.4-90%). Domperidone and candesartan have similar activity and were more powerful than miconazole against S. aureus virulence. The hemolysins and lipase inhibition were the greatest under the domperidone effect. Candesartan showed a remarkable reduction in staphyloxanthin production. The highest inhibitory effect of proteolytic activity was obtained with domperidone and candesartan. Biofilm was significantly reduced by miconazole. Expression levels of crtM, sigB, sarA, agrA, hla, fnbA, and icaA genes were significantly reduced under candesartan (68.98-82.7%), domperidone (62.6-77.2%), and miconazole (32.96-52.6%) at sub-MIC concentrations. Candesartan showed the highest inhibition activity against crtM, sigB, sarA, agrA, hla, and icaA expression followed by domperidone then miconazole. Domperidone showed the highest downregulation activity against fnbA gene. In conclusion, candesartan, domperidone, and miconazole could serve as anti-virulence agents for attenuation of S. aureus pathogenicity.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Antibacterianos/farmacologia , Benzimidazóis , Biofilmes , Compostos de Bifenilo , Domperidona/farmacologia , Humanos , Miconazol/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus , Tetrazóis , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...