Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35794005

RESUMO

V-ATPases are rotary proton pumps that serve as signaling hubs with numerous protein binding partners. CryoEM with exhaustive focused classification allowed detection of endogenous proteins associated with porcine kidney V-ATPase. An extra C subunit was found in ∼3% of complexes, whereas ∼1.6% of complexes bound mEAK-7, a protein with proposed roles in dauer formation in nematodes and mTOR signaling in mammals. High-resolution cryoEM of porcine kidney V-ATPase with recombinant mEAK-7 showed that mEAK-7's TLDc domain interacts with V-ATPase's stator, whereas its C-terminal α helix binds V-ATPase's rotor. This crosslink would be expected to inhibit rotary catalysis. However, unlike the yeast TLDc protein Oxr1p, exogenous mEAK-7 does not inhibit V-ATPase and mEAK-7 overexpression in cells does not alter lysosomal or phagosomal pH. Instead, cryoEM suggests that the mEAK-7:V-ATPase interaction is disrupted by ATP-induced rotation of the rotor. Comparison of Oxr1p and mEAK-7 binding explains this difference. These results show that V-ATPase binding by TLDc domain proteins can lead to effects ranging from strong inhibition to formation of labile interactions that are sensitive to the enzyme's activity.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Animais , Microscopia Crioeletrônica , Mamíferos/metabolismo , Ligação Proteica , Subunidades Proteicas/química , Suínos , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo
2.
Nat Cell Biol ; 24(5): 708-722, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35484249

RESUMO

Despite their low abundance, phosphoinositides play a central role in membrane traffic and signalling. PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are uniquely important, as they promote cell growth, survival and migration. Pathogenic organisms have developed means to subvert phosphoinositide metabolism to promote successful infection and their survival in host organisms. We demonstrate that PtdIns(3,4)P2 is a major product generated in host cells by the effectors of the enteropathogenic bacteria Salmonella and Shigella. Pharmacological, gene silencing and heterologous expression experiments revealed that, remarkably, the biosynthesis of PtdIns(3,4)P2 occurs independently of phosphoinositide 3-kinases. Instead, we found that the Salmonella effector SopB, heretofore believed to be a phosphatase, generates PtdIns(3,4)P2 de novo via a phosphotransferase/phosphoisomerase mechanism. Recombinant SopB is capable of generating PtdIns(3,4,5)P3 and PtdIns(3,4)P2 from PtdIns(4,5)P2 in a cell-free system. Through a remarkable instance of convergent evolution, bacterial effectors acquired the ability to synthesize 3-phosphorylated phosphoinositides by an ATP- and kinase-independent mechanism, thereby subverting host signalling to gain entry and even provoke oncogenic transformation.


Assuntos
Fosfatos de Fosfatidilinositol , Fosfatidilinositóis , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Salmonella , Transdução de Sinais
3.
J Cell Biol ; 221(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35024770

RESUMO

Acidification of secretory and endocytic organelles is required for proper receptor recycling, membrane traffic, protein degradation, and solute transport. Proton-pumping vacuolar H+ ATPases (V-ATPases) are responsible for this luminal acidification, which increases progressively as secretory and endocytic vesicles mature. An increasing density of V-ATPase complexes is thought to account for the gradual decrease in pH, but available reagents have not been sufficiently sensitive or specific to test this hypothesis. We introduce a new probe to localize and quantify V-ATPases. The probe is derived from SidK, a Legionella pneumophila effector protein that binds to the V-ATPase A subunit. We generated plasmids encoding fluorescent chimeras of SidK1-278, and labeled recombinant SidK1-278 with Alexa Fluor 568 to visualize and quantify V-ATPases with high specificity in live and fixed cells, respectively. We show that V-ATPases are acquired progressively during phagosome maturation, that they distribute in discrete membrane subdomains, and that their density in lysosomes depends on their subcellular localization.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Fluorescência , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Camundongos , Fagossomos/metabolismo , Células RAW 264.7 , Ratos , Saccharomyces cerevisiae/metabolismo
4.
Biochemistry ; 60(23): 1808-1821, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34080844

RESUMO

Tuberous sclerosis protein complex (pTSC) nucleates a proteinaceous signaling hub that integrates information about the internal and external energy status of the cell in the regulation of growth and energy consumption. Biochemical and cryo-electron microscopy studies of recombinant pTSC have revealed its structure and stoichiometry and hinted at the possibility that the complex may form large oligomers. Here, we have partially purified endogenous pTSC from fasted mammalian brains of rat and pig by leveraging a recombinant antigen binding fragment (Fab) specific for the TSC2 subunit of pTSC. We demonstrate Fab-dependent purification of pTSC from membrane-solubilized fractions of the brain homogenates. Negative stain electron microscopy of the samples purified from pig brain demonstrates rod-shaped protein particles with a width of 10 nm, a variable length as small as 40 nm, and a high degree of conformational flexibility. Larger filaments are evident with a similar 10 nm width and a ≤1 µm length in linear and weblike organizations prepared from pig brain. Immunogold labeling experiments demonstrate linear aggregates of pTSC purified from mammalian brains. These observations suggest polymerization of endogenous pTSC into filamentous superstructures.


Assuntos
Proteína 2 do Complexo Esclerose Tuberosa/química , Proteína 2 do Complexo Esclerose Tuberosa/ultraestrutura , Esclerose Tuberosa/metabolismo , Animais , Microscopia Crioeletrônica/métodos , Citoesqueleto/metabolismo , Humanos , Ligação Proteica/fisiologia , Ratos , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Suínos , Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor/metabolismo
5.
Cell Rep ; 33(1): 108230, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027666

RESUMO

mTOR is a serine/threonine kinase and a master regulator of cell growth and proliferation. Raptor, a scaffolding protein that recruits substrates to mTOR complex 1 (mTORC1), is known to be phosphorylated during mitosis, but the significance of this phosphorylation remains largely unknown. Here we show that raptor expression and mTORC1 activity are dramatically reduced in cells arrested in mitosis. Expression of a non-phosphorylatable raptor mutant reactivates mTORC1 and significantly reduces cytotoxicity of the mitotic poison Taxol. This effect is mediated via degradation of PDCD4, a tumor suppressor protein that inhibits eIF4A activity and is negatively regulated by the mTORC1/S6K pathway. Moreover, pharmacological inhibition of eIF4A is able to enhance the effects of Taxol and restore sensitivity in Taxol-resistant cancer cells. These findings indicate that the mTORC1/S6K/PDCD4/eIF4A axis has a pivotal role in the death versus slippage decision during mitotic arrest and may be exploited clinically to treat tumors resistant to anti-mitotic agents.


Assuntos
Mitose/genética , Serina-Treonina Quinases TOR/metabolismo , Células HeLa , Humanos , Resultado do Tratamento
6.
Science ; 367(6483): 1240-1246, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32165585

RESUMO

In neurons, the loading of neurotransmitters into synaptic vesicles uses energy from proton-pumping vesicular- or vacuolar-type adenosine triphosphatases (V-ATPases). These membrane protein complexes possess numerous subunit isoforms, which complicates their analysis. We isolated homogeneous rat brain V-ATPase through its interaction with SidK, a Legionella pneumophila effector protein. Cryo-electron microscopy allowed the construction of an atomic model, defining the enzyme's ATP:proton ratio as 3:10 and revealing a homolog of yeast subunit f in the membrane region, which we tentatively identify as RNAseK. The c ring encloses the transmembrane anchors for cleaved ATP6AP1/Ac45 and ATP6AP2/PRR, the latter of which is the (pro)renin receptor that, in other contexts, is involved in both Wnt signaling and the renin-angiotensin system that regulates blood pressure. This structure shows how ATP6AP1/Ac45 and ATP6AP2/PRR enable assembly of the enzyme's catalytic and membrane regions.


Assuntos
Biomarcadores/química , Encéfalo/enzimologia , Receptores de Superfície Celular/química , ATPases Vacuolares Próton-Translocadoras/química , Animais , Proteínas de Bactérias/química , Biocatálise , Membrana Celular/enzimologia , Microscopia Crioeletrônica , Modelos Químicos , Domínios Proteicos , Ratos , Sistema Renina-Angiotensina , Via de Sinalização Wnt
7.
Curr Opin Hematol ; 25(3): 163-170, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29438259

RESUMO

PURPOSE OF REVIEW: Current research on the human band 3 glycoprotein, the red cell chloride/bicarbonate anion exchanger (AE1), is highlighted and placed within a structural context. RECENT FINDINGS: The determination of the crystal structure of the membrane domain of human band 3, the founding member of the solute carrier 4 (SLC4) family of bicarbonate transporters, is a major breakthrough toward understanding the mechanism of action of this membrane transport protein, its interaction with partner proteins, and how mutations linked to disease affect its ability to fold and function. SUMMARY: Band 3 contains 14 transmembrane segments arranged in a 7+7 transmembrane inverted repeat topology common to all members of the SLC4 family and the unrelated SLC26 anion transporter family. A functional feature of this fold is the presence of a core and a gate domain: the core domain contains two short transmembrane helices (TM3 and 10) that face each other in the middle of the membrane with the positive N-terminal helix dipoles creating the anion-binding site, whereas the gate domain forms the dimer interface. During transport, the movement of these two domains relative to each other provides the intracellular and extracellular compartments with alternating access to the central anion-binding site.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito , Bicarbonatos/metabolismo , Mutação , Animais , Proteína 1 de Troca de Ânion do Eritrócito/química , Proteína 1 de Troca de Ânion do Eritrócito/genética , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Cristalografia por Raios X , Humanos , Transporte de Íons/genética , Domínios Proteicos , Estrutura Secundária de Proteína
8.
Proc Natl Acad Sci U S A ; 114(11): E2106-E2115, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28251928

RESUMO

IFIT1 (IFN-induced protein with tetratricopeptide repeats-1) is an effector of the host innate immune antiviral response that prevents propagation of virus infection by selectively inhibiting translation of viral mRNA. It relies on its ability to compete with the translation initiation factor eIF4F to specifically recognize foreign capped mRNAs, while remaining inactive against host mRNAs marked by ribose 2'-O methylation at the first cap-proximal nucleotide (N1). We report here several crystal structures of RNA-bound human IFIT1, including a 1.6-Å complex with capped RNA. IFIT1 forms a water-filled, positively charged RNA-binding tunnel with a separate hydrophobic extension that unexpectedly engages the cap in multiple conformations (syn and anti) giving rise to a relatively plastic and nonspecific mode of binding, in stark contrast to eIF4E. Cap-proximal nucleotides encircled by the tunnel provide affinity to compete with eIF4F while allowing IFIT1 to select against N1 methylated mRNA. Gel-shift binding assays confirm that N1 methylation interferes with IFIT1 binding, but in an RNA-dependent manner, whereas translation assays reveal that N1 methylation alone is not sufficient to prevent mRNA recognition at high IFIT1 concentrations. Structural and functional analysis show that 2'-O methylation at N2, another abundant mRNA modification, is also detrimental for RNA binding, thus revealing a potentially synergistic role for it in self- versus nonself-mRNA discernment. Finally, structure-guided mutational analysis confirms the importance of RNA binding for IFIT1 restriction of a human coronavirus mutant lacking viral N1 methylation. Our structural and biochemical analysis sheds new light on the molecular basis for IFIT1 translational inhibition of capped viral RNA.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Capuzes de RNA/química , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Humanos , Metilação , Camundongos , Modelos Moleculares , Conformação Molecular , Conformação de Ácido Nucleico , Matrizes de Pontuação de Posição Específica , Ligação Proteica , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA Viral/química , RNA Viral/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Relação Estrutura-Atividade
9.
J Biol Chem ; 288(22): 15913-25, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23589308

RESUMO

α-Catenin is an actin- and vinculin-binding protein that regulates cell-cell adhesion by interacting with cadherin adhesion receptors through ß-catenin, but the mechanisms by which it anchors the cadherin-catenin complex to the actin cytoskeleton at adherens junctions remain unclear. Here we determined crystal structures of αE-catenin in the autoinhibited state and the actin-binding domain of αN-catenin. Together with the small-angle x-ray scattering analysis of full-length αN-catenin, we deduced an elongated multidomain assembly of monomeric α-catenin that structurally and functionally couples the vinculin- and actin-binding mechanisms. Cellular and biochemical studies of αE- and αN-catenins show that αE-catenin recruits vinculin to adherens junctions more effectively than αN-catenin, partly because of its higher affinity for actin filaments. We propose a molecular switch mechanism involving multistate conformational changes of α-catenin. This would be driven by actomyosin-generated tension to dynamically regulate the vinculin-assisted linkage between adherens junctions and the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina , Junções Aderentes , Modelos Biológicos , Proteínas do Tecido Nervoso , Vinculina , alfa Catenina , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Junções Aderentes/química , Junções Aderentes/genética , Junções Aderentes/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Vinculina/química , Vinculina/genética , Vinculina/metabolismo , alfa Catenina/química , alfa Catenina/genética , alfa Catenina/metabolismo
10.
Nature ; 494(7435): 60-4, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23334420

RESUMO

Interferon-induced proteins with tetratricopeptide repeats (IFITs) are innate immune effector molecules that are thought to confer antiviral defence through disruption of protein-protein interactions in the host translation-initiation machinery. However, it was recently discovered that IFITs can directly recognize viral RNA bearing a 5'-triphosphate group (PPP-RNA), which is a molecular signature that distinguishes it from host RNA. Here we report crystal structures of human IFIT5, its complex with PPP-RNAs, and an amino-terminal fragment of IFIT1. The structures reveal a new helical domain that houses a positively charged cavity designed to specifically engage only single-stranded PPP-RNA, thus distinguishing it from the canonical cytosolic sensor of double-stranded viral PPP-RNA, retinoic acid-inducible gene I (RIG-I, also known as DDX58). Mutational analysis, proteolysis and gel-shift assays reveal that PPP-RNA is bound in a non-sequence-specific manner and requires a 5'-overhang of approximately three nucleotides. Abrogation of PPP-RNA binding in IFIT1 and IFIT5 was found to cause a defect in the antiviral response by human embryonic kidney cells. These results demonstrate the mechanism by which IFIT proteins selectively recognize viral RNA, and lend insight into their downstream effector function.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Sítios de Ligação , Humanos , Imunidade Inata/imunologia , Modelos Moleculares , Fosforilação , Conformação Proteica , RNA Viral/genética , Proteínas de Ligação a RNA , Reprodutibilidade dos Testes , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...