Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37420893

RESUMO

Recently, unmanned aerial vehicles (UAVs) have emerged as a viable solution for data collection from remote Internet of Things (IoT) applications. However, the successful implementation in this regard necessitates the development of a reliable and energy-efficient routing protocol. This paper proposes a reliable and an energy-efficient UAV-assisted clustering hierarchical (EEUCH) protocol designed for remote wireless sensor networks (WSNs) based IoT applications. The proposed EEUCH routing protocol facilitates UAVs to collect data from ground sensor nodes (SNs) that are equipped with wake-up radios (WuRs) and deployed remotely from the base station (BS) in the field of interest (FoI). During each round of the EEUCH protocol, the UAVs arrive at the predefined hovering positions at the FoI, perform clear channel assignment, and broadcast wake-up calls (WuCs) to the SNs. Upon receiving the WuCs by the SNs' wake-up receivers, the SNs perform carrier sense multiple access/collision avoidance before sending joining requests to ensure reliability and cluster-memberships with the particular UAV whose WuC is received. The cluster-member SNs turn on their main radios (MRs) for data packet transmission. The UAV assigns time division multiple access (TDMA) slots to each of its cluster-member SNs whose joining request is received. Each SN must send the data packets in its assigned TDMA slot. When data packets are successfully received by the UAV, it sends acknowledgments to the SNs, after which the SNs turn off their MRs, completing a single round of the protocol. The proposed EEUCH routing protocol with WuR eliminates the issue of cluster overlapping, improves the overall performance, and increases network stability time by a factor of 8.7. It also improves energy efficiency by a factor of 12.55, resulting in a longer network lifespan compared to Low Energy Adaptive Clustering Hierarchy (LEACH) protocol. Moreover, EEUCH collects 5.05 times more data from the FoI than LEACH. These results are based on simulations in which the EEUCH protocol outperformed the existing six benchmark routing protocols proposed for homogeneous, two-tier, and three-tier heterogeneous WSNs.


Assuntos
Internet das Coisas , Reprodutibilidade dos Testes , Coleta de Dados , Benchmarking , Cafeína , Análise por Conglomerados
2.
Sensors (Basel) ; 22(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36560021

RESUMO

Interference has been a key roadblock against the effectively deployment of applications for end-users in wireless networks including fifth-generation (5G) and beyond fifth-generation (B5G) networks. Protocols and standards for various communication types have been established and utilised by the community in the last few years. However, interference remains a key challenge, preventing end-users from receiving the quality of service (QoS) expected for many 5G applications. The increased need for better data rates and more exposure to multimedia information lead to a non-orthogonal multiple access (NOMA) scheme that aims to enhance spectral efficiency and link additional applications employing successive interference cancellation and superposition coding mechanisms. Recent work suggests that the NOMA scheme performs better when combined with suitable wireless technologies specifically by incorporating antenna diversity including massive multiple-input multiple-output architecture, data rate fairness, energy efficiency, cooperative relaying, beamforming and equalization, network coding, and space-time coding. In this paper, we discuss several cooperative NOMA systems operating under the decode-and-forward and amplify-and-forward protocols. The paper provides an overview of power-domain NOMA-based cooperative communication, and also provides an outlook of future research directions of this area.


Assuntos
Noma , Humanos , Comunicação , Multimídia , Tecnologia sem Fio
3.
Sensors (Basel) ; 22(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36146190

RESUMO

In vehicular ad hoc networks (VANETs), helpful information dissemination establishes the foundation of communication. One of the significant difficulties in developing a successful dissemination system for VANETs is avoiding traffic fatalities. Another essential success metric is the transfer of reliable and secure warning messages through the shortest path, particularly on highways with high mobility. Clustering vehicles is a general solution to these challenges, as it allows warning alerts to be re-broadcast to nearby clusters by fewer vehicles. Hence, trustworthy cluster head (CH) selections are critical to decreasing the number of retransmissions. In this context, we suggest a clustering technique called Optimal Path Routing Protocol for Warning Messages (OPRP) for dissemination in highway VANETs. OPRP relies on mobility measured to reinforce cluster creation, evade transmission overhead, and sustain message authenticity in a high mobility environment. Moreover, we consider communication between the cluster heads to reduce the number of transmissions. Furthermore, the cluster head is chosen using the median technique based on an odd or even number of vehicles for a stable and lengthy cluster life. By altering traffic densities and speeds, OPRP is compared with prominent schemes. Simulation results revealed that OPRP offers enhanced throughput, end-to-end delay, maximizing packet delivery ratio, and message validity.

4.
PLoS One ; 16(11): e0258279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34748568

RESUMO

One of the significant challenges in the Internet of Things (IoT) is the provisioning of guaranteed security and privacy, considering the fact that IoT devices are resource-limited. Oftentimes, in IoT applications, remote users need to obtain real-time data, with guaranteed security and privacy, from resource-limited network nodes through the public Internet. For this purpose, the users need to establish a secure link with the network nodes. Though the IPv6 over low-power wireless personal area networks (6LoWPAN) adaptation layer standard offers IPv6 compatibility for resource-limited wireless networks, the fundamental 6LoWPAN structure ignores security and privacy characteristics. Thus, there is a pressing need to design a resource-efficient authenticated key exchange (AKE) scheme for ensuring secure communication in 6LoWPAN-based resource-limited networks. This paper proposes a resource-efficient secure remote user authentication scheme for 6LoWPAN-based IoT networks, called SRUA-IoT. SRUA-IoT achieves the authentication of remote users and enables the users and network entities to establish private session keys between themselves for indecipherable communication. To this end, SRUA-IoT uses a secure hash algorithm, exclusive-OR operation, and symmetric encryption primitive. We prove through informal security analysis that SRUA-IoT is secured against a variety of malicious attacks. We also prove the security strength of SRUA-IoT through formal security analysis conducted by employing the random oracle model. Additionally, we prove through Scyther-based validation that SRUA-IoT is resilient against various attacks. Likewise, we demonstrate that SRUA-IoT reduces the computational cost of the nodes and communication overheads of the network.


Assuntos
Comunicação , Segurança Computacional/normas , Internet das Coisas/tendências , Interface Usuário-Computador , Algoritmos , Humanos , Internet/normas , Privacidade , Telecomunicações/normas
5.
Sensors (Basel) ; 21(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207104

RESUMO

This paper studies the cell-edge user's performance of a secure multiple-input single-output non-orthogonal multiple-access (MISO-NOMA) system under the Rayleigh fading channel in the presence of an eavesdropper. We suppose a worst-case scenario that an eavesdropper has ideal user detection ability. In particular, we suggest an optimization-based beamforming scheme with MISO-NOMA to improve the security and outage probability of a cell-edge user while maintaining the quality of service of the near-user and degrading the performance of the eavesdropper. To this end, power allocation coefficients are adjusted with the help of target data rates of both the users by utilizing a simultaneous wireless information and power transfer with time switching/power splitting protocol, where the near-user is used to forward the information to cell-edge user. The analytical results demonstrate that our beamformer analysis can achieve reduced outage probability of cell-edge user in the presence of the eavesdropper. Moreover, the provided simulation results validate our theoretical analysis and show that our approach improves the overall performance of a two-user cooperative MISO-NOMA system.


Assuntos
Noma , Simulação por Computador , Humanos , Probabilidade
6.
Sensors (Basel) ; 21(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069364

RESUMO

In mobile edge computing (MEC), partial computational offloading can be intelligently investigated to reduce the energy consumption and service delay of user equipment (UE) by dividing a single task into different components. Some of the components execute locally on the UE while the remaining are offloaded to a mobile edge server (MES). In this paper, we investigate the partial offloading technique in MEC using a supervised deep learning approach. The proposed technique, comprehensive and energy efficient deep learning-based offloading technique (CEDOT), intelligently selects the partial offloading policy and also the size of each component of a task to reduce the service delay and energy consumption of UEs. We use deep learning to find, simultaneously, the best partitioning of a single task with the best offloading policy. The deep neural network (DNN) is trained through a comprehensive dataset, generated from our mathematical model, which reduces the time delay and energy consumption of the overall process. Due to the complexity and computation of the mathematical model in the algorithm being high, due to trained DNN the complexity and computation are minimized in the proposed work. We propose a comprehensive cost function, which depends on various delays, energy consumption, radio resources, and computation resources. Furthermore, the cost function also depends on energy consumption and delay due to the task-division-process in partial offloading. None of the literature work considers the partitioning along with the computational offloading policy, and hence, the time and energy consumption due to task-division-process are ignored in the cost function. The proposed work considers all the important parameters in the cost function and generates a comprehensive training dataset with high computation and complexity. Once we get the training dataset, then the complexity is minimized through trained DNN which gives faster decision making with low energy consumptions. Simulation results demonstrate the superior performance of the proposed technique with high accuracy of the DNN in deciding offloading policy and partitioning of a task with minimum delay and energy consumption for UE. More than 70% accuracy of the trained DNN is achieved through a comprehensive training dataset. The simulation results also show the constant accuracy of the DNN when the UEs are moving which means the decision making of the offloading policy and partitioning are not affected by the mobility of UEs.

7.
Sensors (Basel) ; 21(5)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668751

RESUMO

In Vehicular Adhoc Networks (VANETs), disseminating Emergency Messages (EMs) to a maximum number of vehicles with low latency and low packet loss is critical for road safety. However, avoiding the broadcast storm and dealing with large-scale dissemination of EMs in urban VANETs, particularly at intersections, are the challenging tasks. The problems become even more challenging in a dense network. We propose an Effective Emergency Message Dissemination Scheme (EEMDS) for urban VANETs. The scheme is based on our mobility metrics to avoid communication overhead and to maintain a stable cluster structure. Every vehicle takes into account its direction angle and path loss factor for selecting a suitable cluster head. Moreover, we introduce estimated link stability to choose a suitable relay vehicle that reduces the number of rebroadcasts and communication congestion in the network. Simulation results show that EEMDS provides an acceptable end-to-end delay, information coverage, and packet delivery ratio compared to the eminent EM dissemination schemes.

8.
Entropy (Basel) ; 22(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33286831

RESUMO

High capacity long haul communication and cost-effective solutions for low loss transmission are the major advantages of optical fibers, which makes them a promising solution to be used for backhaul network transportation. A distortion-tolerant 100 Gbps framework that consists of long haul and high capacity transport based wavelength division multiplexed (WDM) system is investigated in this paper, with an analysis on different design parameters to mitigate the amplified spontaneous emission (ASE) noise and nonlinear effects due to the fiber transmission. The performance degradation in the presence of non-linear effects is evaluated and a digital signal processing (DSP) assisted receiver is proposed in order to achieve bit error rate (BER) of 1.56 × 10-6 and quality factor (Q-factor) of 5, using 25 and 50 GHz channel spacing with 90 µm2 effective area of the optical fiber. Analytical calculations of the proposed WDM system are presented and the simulation results verify the effectiveness of the proposed approach in order to mitigate non-linear effects for up to 300 km length of optical fiber transmission.

9.
Sensors (Basel) ; 20(9)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397469

RESUMO

IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) has an ample share in the Internet of Things. Sensor nodes in 6LoWPAN collect vital information from the environment and transmit to a central server through the public Internet. Therefore, it is inevitable to secure communications and allow legitimate sensor nodes to access network resources. This paper presents a lightweight Authentication and Key Exchange (AKE) scheme for 6LoWPAN using an authenticated encryption algorithm and hash function. Upon successful authentication, sensor nodes and the central server can establish the secret key for secure communications. The proposed scheme ensures header verification during the AKE process without using IP security protocol and, thus, has low communication and computational overheads. The logical correctness of the proposed scheme is validated through Burrows-Abadi-Needham logic. Furthermore, automatic security analyses by using AVISPA illustrate that the proposed scheme is resistant to various malicious attacks in 6LoWPANs.

10.
Sensors (Basel) ; 20(1)2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861746

RESUMO

Vehicular ad hoc networks (VANETs) are the key enabling technology for intelligent transportation systems. Carrier-sense multiple access with collision avoidance (CSMA/CA) is the de facto media access standard for inter-vehicular communications, but its performance degrades in high-density networks. Time-division multiple access (TDMA)-based protocols fill this gap to a certain extent, but encounter inefficient clock synchronization and lack of prioritized message delivery. Therefore, we propose a priority-based direction-aware media access control (PDMAC) as a novel protocol for intra-cluster and inter-cluster clock synchronization. Furthermore, PDMAC pioneers a three-tier priority assignment technique to enhance warning messages delivery by taking into account the direction component, message type, and severity level on each tier. Analytical and simulation results validate the improved performance of PDMAC in terms of clock synchronization, channel utilization, message loss rate, end-to-end delays, and network throughput, as compared with eminent VANET MAC protocols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...