Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1341, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228742

RESUMO

In this work, the chaotic motions of relativistic electrons in X-ray free-electron lasers are investigated using an optical undulator in the presence of a magnetized ion-channel background. To miniaturize X-ray light sources, the optical undulator is a promising concept. The optical undulator provides higher optical gain than conventional magnetostatic undulators due to its micrometer wavelength. In addition, it reduces the required electron beam energy from several GeV to the multi-MeV range to produce X-ray pulses. The interaction of an optical undulator with an intense relativistic electron beam is a highly non-linear phenomenon that can lead to chaotic dynamics. At synchrotron radiation sources, the possibility of chaos control for X-ray FELs can be critical for certain classes of experimental studies. The equations of motion for a relativistic electron propagating through the optical undulator in the presence of a magnetized ion-channel can be derived from the Hamiltonian of the interaction region. Simulation results revealed that the intensity of the perturbation route from orderly behavior to chaos depends on the beam density, axial magnetic field strength, ion-channel density parameter, and pump laser undulator. Specific values of parameters were obtained for the transition from regular to chaotic paths. Bifurcation diagrams of the system were plotted to demonstrate the origin of chaos at a critical point, and Poincaré maps were created to distinguish between chaotic and orderly motions of electrons. The proposed new scheme can help to improve X-ray FELs, which have potential usages in basic sciences, medicine, and industry.

2.
Arch Razi Inst ; 77(6): 2097-2104, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-37274897

RESUMO

In recent years, a nanoparticle-based strategy has shown that non-denatured protein toxins can be used to enhance the appropriate immune response. Once the toxin reacts between the nanoparticles and the protein (toxin), it loses its toxicity because it does not attach to its ligand at the cell surface. The results of the nanoparticle and toxin complex show that the nanoparticles facilitate the internal release of the toxin. Clostridium perfringens beta toxin is produced by Clostridium perfringens type B and C, and diarrhea is the most important disease caused in newborn lambs. When beta toxin forms a complex with nanoparticles, the reaction between the toxin and the nanoparticle leads to the formation of a new form of nanoparticle in which the toxin loses its lethality due to its involvement; therefore, it becomes a toxoid. The nanoparticles used in this research are of poly lactic-co-glycolic acid (PLGA) type, one of the most developed biodegradable polymers. This study aimed to isolate and purify Clostridium perfringens beta toxin and produce its complex with PLGA nanoparticles to form a non-toxic structure. In this study, Clostridium perfringens beta toxin type B was isolated using ammonium sulfate precipitation and gel filtration chromatography. Toxin assay was performed in vivo (lethal dose [LD50]) and in vitro by sodium dodecyl sulphate-polyacrylamide gel electrophoresis at each stage, and the quantity of purified toxin was calculated to be 10 mg/ml. Afterward, the beta toxin antigen was used as the basis for the preparation of nanotoxoid candidates with nanoparticle formulation. Moreover, the PLGA polymer and water-oil-water methods were used to fabricate nanoparticles. Under optimal conditions, nanoparticles without antigen with an average size of 100 nm and zeta potential of -23.28 mV, as well as nanoparticles containing antigen with an average size of 120 nm and zeta potential of -18.2 mV, were prepared. When nanoparticles are injected into mice with the beta toxin, the toxin becomes a toxoid with no toxicity effects, and it cannot bind to its receptors and reveal its effects. In this study, the mice showed mild symptoms in one case, and none of them died. The beta and PLGA toxin model could also be applied as a candidate to study the release and immunization of the target animal. In order to achieve antigen regulation using natural polymers, it is recommended to conduct a comparative study between nanoparticles based on natural polymers.


Assuntos
Clostridium perfringens , Polímeros , Animais , Camundongos , Ovinos , Relação Dose-Resposta a Droga , Toxoides
3.
Bratisl Lek Listy ; 119(2): 71-74, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29455539

RESUMO

OBJECTIVES: The present study was aimed at comparing tetanus toxoid (TT)­loaded-chitosan nanoparticles with aluminum hydroxide as a common vaccine adjuvant. BACKGROUND: Tetanus remains to be a major public health problem. Nanoparticles have been extensively used as immune adjuvants. Tetanus toxoid (TT) encapsulated in chitosan nanoparticles is considered to be a promising tetanus vaccine candidate. METHODS: TT­loaded chitosan nanoparticles were prepared by the ionic gelation method. The nanoparticles were studied by SEM for their size and morphology. In vivo study was conducted to evaluate the immunity response using mice divided into 4 groups and injected with encapsulated toxoid. The immune responses were then measured using indirect ELISA. RESULTS: The purity and integrity of antigen were confirmed by SDS-PAGE electrophoresis. The size of nanoparticles was estimated at 100 nm. As a result, the IgG antibody levels were 1.9, 1.76, and 0.87 in chitosan nanoparticles, aluminum hydroxide, and TT alone groups, respectively. Also, the immune responses were significantly higher in immunized groups compared to control groups vaccinated with free adjuvant vaccines (p < 0.05). CONCLUSIONS: The quality and efficacy of toxoid­loaded chitosan nanoparticles were reasonable. It enhanced the immune responses as much as aluminum hydroxide adjuvant does and thus may be a good alternative candidate (Tab. 1, Fig. 3, Ref. 16).


Assuntos
Adjuvantes Imunológicos/farmacologia , Hidróxido de Alumínio/farmacologia , Quitosana/farmacologia , Imunoglobulina G/efeitos dos fármacos , Nanopartículas , Toxoide Tetânico/farmacologia , Animais , Eletroforese em Gel de Poliacrilamida , Feminino , Imunização , Imunogenicidade da Vacina , Imunoglobulina G/imunologia , Camundongos , Nanopartículas/ultraestrutura
4.
J Synchrotron Radiat ; 23(Pt 6): 1282-1295, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787234

RESUMO

Employing laser wigglers and accelerators provides the potential to dramatically cut the size and cost of X-ray light sources. Owing to recent technological developments in the production of high-brilliance electron beams and high-power laser pulses, it is now conceivable to make steps toward the practical realisation of laser-pumped X-ray free-electron lasers (FELs). In this regard, here the head-on collision of a relativistic dense electron beam with a linearly polarized laser pulse as a wiggler is studied, in which the laser wiggler can be realised using a conventional quantum laser. In addition, an external guide magnetic field is employed to confine the electron beam against self-fields, therefore improving the FEL operation. Conditions allowing such an operating regime are presented and its relevant validity checked using a set of general scaling formulae. Rigorous analytical solutions of the dynamic equations are provided. These solutions are verified by performing calculations using the derived solutions and well known Runge-Kutta procedure to simulate the electron trajectories. The effects of self-fields on the FEL gain in this configuration are estimated. Numerical calculations indicate that in the presence of self-fields the sensitivity of the gain increases in the vicinity of resonance regions. Besides, diamagnetic and paramagnetic effects of the wiggler-induced self-magnetic field cause gain decrement and enhancement for different electron orbits, while these diamagnetic and paramagnetic effects increase with increasing beam density. The results are compared with findings of planar magnetostatic wiggler FELs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...