Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Dermatol Res ; 316(7): 353, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850353

RESUMO

Despite the great progress in developing wound dressings, delayed wound closure still remains a global challenge. Thus, developing novel wound dressings and employing advanced strategies, including tissue engineering, are urgently desired. The carboxylated cellulose was developed through the in situ synthesis method and further reinforced by incorporating pal-KTTKS to stimulate collagen synthesis and improve wound healing. The developed composites supported cell adhesion and proliferation and showed good biocompatibility. To boost wound-healing performance, adipose-derived mesenchymal stem cells (MSC) were seeded on the pal-KTTKS-enriched composites to be implanted in a rat model of burn wound healing. Healthy male rats were randomly divided into four groups and wound-healing performance of Vaseline gauze (control), carboxylated cellulose (CBC), pal-KTTKS-enriched CBC (KTTKS-CBC), and MSCs seeded on the KTTKS-CBC composites (MSC-KTTKS-CBC) were evaluated on days 3, 7, and 14 post-implantation. In each group, the designed therapeutic dressings were renewed every 5 days to increase wound-healing performance. We found that KTTKS-CBC and MSC-KTTKS-CBC composites exhibited significantly better wound healing capability, as evidenced by significantly alleviated inflammation, increased collagen deposition, improved angiogenesis, and considerably accelerated wound closure. Nevertheless, the best wound-healing performance was observed in the MSC-KTTKS-CBC groups among all four groups. This research suggests that the MSC-KTTKS-CBC composite offers a great deal of promise as a wound dressing to enhance wound regeneration and expedite wound closure in the clinic.


Assuntos
Queimaduras , Celulose , Modelos Animais de Doenças , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Cicatrização , Animais , Queimaduras/terapia , Cicatrização/efeitos dos fármacos , Masculino , Ratos , Transplante de Células-Tronco Mesenquimais/métodos , Ratos Sprague-Dawley , Bandagens , Colágeno/metabolismo , Humanos , Pele/patologia , Pele/lesões , Pele/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas
2.
Clin Exp Reprod Med ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757278

RESUMO

Objective: Scrotal hyperthermia poses a significant threat to spermatogenesis and fertility in mammalian species. This study investigated the effects of vitamin B12 and vitamin C on spermatogenesis in adult male mice subjected to long-term scrotal hyperthermia. The rationale is based on the sensitivity of germ cells and epididymal sperm to increased scrotal temperatures. While various factors, both internal and external, can raise the testicular temperature, this study focused on the potential therapeutic roles of vitamins B12 and C. Methods: After inducing scrotal hyperthermia in mice, vitamin B12 and vitamin C were administered for 35 days. We assessed sperm parameters, serum testosterone levels, stereological parameters, the percentage of apoptotic cells, reactive oxygen species (ROS) levels, and glutathione (GSH) levels. Additionally, real-time polymerase chain reaction was used to analyze the expression of the c-kit, stimulated by retinoic acid gene 8 (Stra8), and proliferating cell nuclear antigen (Pcna) genes. Results: Vitamin C was more effective than vitamin B12 in improving sperm parameters and enhancing stereological parameters. The study showed a significant decrease in apoptotic cells and a beneficial modulation of ROS and GSH levels following vitamin administration. Moreover, both vitamins positively affected the expression levels of the c-kit, Stra8, and Pcna genes. Conclusion: This research deepens our understanding of the combined impact of vitamins B12 and C in mitigating the effects of scrotal hyperthermia, providing insights into potential therapeutic strategies for heat stress-related infertility. The findings highlight the importance of considering vitamin supplementation as a practical approach to counter the detrimental effects of elevated scrotal temperatures on male reproductive health.

3.
J Chem Neuroanat ; 138: 102419, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38609056

RESUMO

Huntington's disease (HD) is a hereditary condition characterized by the gradual deterioration of nerve cells in the striatum. Recent scientific investigations have revealed the promising potential of Extracellular vesicles (EVs) as a therapy to mitigate inflammation and enhance motor function. This study aimed to examine the impact of administering EVs derived from human umbilical cord blood (HUCB) on the motor abilities and inflammation levels in a rat model of HD. After ultracentrifugation to prepare EVs from HUCB to determine the nature of the obtained contents, the expression of CD markers 81 and 9, the average size and also the morphology of its particles were investigated by DLS and Transmission electron microscopy (TEM). Then, in order to induce the HD model, 3-nitropropionic acid (3-NP) neurotoxin was injected intraperitoneal into the rats, after treatment by HUCB-EVs, rotarod, electromyogram (EMG) and the open field tests were performed on the rats. Finally, after rat sacrifice and the striatum was removed, Hematoxylin and eosin staining (H&E), stereology, immunohistochemistry, antioxidant tests, and western blot were performed. Our results showed that the contents of the HUCB-EVs express the CD9 and CD81 markers and have spherical shapes. In addition, the injection of HUCB-EVs improved motor and neuromuscular function, reduced gliosis, increased antioxidant activity and inflammatory factor, and partially prevented the decrease of neurons. The findings generally show that HUCB-EVs have neuroprotective effects and reduce neuroinflammation from the toxic effects of 3-NP, which can be beneficial for the recovery of HD.


Assuntos
Modelos Animais de Doenças , Vesículas Extracelulares , Sangue Fetal , Gliose , Doença de Huntington , Fármacos Neuroprotetores , Animais , Vesículas Extracelulares/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Ratos , Humanos , Gliose/patologia , Fármacos Neuroprotetores/farmacologia , Masculino , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Ratos Wistar , Nitrocompostos , Propionatos
4.
Int J Reprod Biomed ; 22(1): 17-30, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38544670

RESUMO

Background: An increase in the temperature of the testis is associated with damage to the epithelium of seminiferous tubules and disruption of sperm production. Objective: The current study aimed to investigate the effect of the Sertoli cell-conditioned medium (SCCM) on the blood-testis-barrier associated genes and spermatogenesis process following scrotal hyperthermia. Materials and Methods: In this experimental study, 40 adult NMRI mice (8 wk, 25-30 gr) were allocated into 4 groups: I) control, II) DMEM (10 µl Dulbecco's Modified Eagle Medium), III) scrotal hyperthermia, and IV) scrotal hyperthermia+SCCM (10 µl SCCM). Hyperthermia was induced by placing the mice scrotum in water at 43 C for 20 min every other day for 10 days. Mice were treated every other day for 5 wk. Then the animals were euthanized, and the tails of epididymis were removed to analyze sperm parameters, testis were taken for stereological assessment, reactive oxygen spices and glutathione levels, and the expression of Ocln, Gja1, Cdh2, and Itgb1. Results: The results of sperm analysis indicated that SCCM-treated mice significantly increased sperm count and motility and reduced DNA fragmentation. In addition, histological and molecular findings showed that the volume of testicular tissue, the number of germ cells, the glutathione level, and the expression of Ocln, Gja1, Cdh2, and Itgb1 genes were significantly increased in the SCCM-treated mice. Conclusion: Findings suggest that growth factors of SCCM stimulate the proliferation and differentiation of germ cells through paracrine effects and upregulate the blood-testis-barrier-associated genes in mice subjected to scrotal hyperthermia.

5.
Behav Brain Res ; 465: 114963, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38499158

RESUMO

Lisdexamfetamine (LDX) is one of the drugs commonly used to treat attention deficit hyperactivity disorder (ADHD). However, its neurological side effects, particularly on cognition, are not fully understood. The present study focused on memory in rats treated with four weeks of LDX injection. We compared LDX-treated rats with control ones, using several methods to evaluate the behavioral responses and electrophysiological, molecular, and histological properties in the hippocampus. Our findings demonstrated that subchronic administration of LDX impaired behavioral performance in all memory assessment tests (Y maze, Morris Water Maze, and Shuttle box). Although LDX did not alter population spike (PS) amplitude, it increased the field excitatory postsynaptic potential (fEPSP) slope of evoked potentials of LTP components. Also, in addition to an increase in expression of caspase-3 in the hippocampus, which indicates the susceptibility to apoptosis in LDX-treated rats, the number of microglia and astrocytes went up significantly in the LDX group. Moreover, Sholl's analysis showed an increase in the soma size and total process length in both hippocampal astrocytes and microglia. Overall, because of these destructive effects of LDX on the hippocampus, which is one of the critical memory-related areas of the brain, the findings of this investigation provide evidence to show the disruption of memory-related variables following the LDX. However, more research is needed to clarify it.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Ratos , Animais , Dimesilato de Lisdexanfetamina/uso terapêutico , Dextroanfetamina , Resultado do Tratamento , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Amnésia/induzido quimicamente , Estimulantes do Sistema Nervoso Central/farmacologia , Método Duplo-Cego
6.
Reprod Sci ; 31(5): 1278-1289, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38228974

RESUMO

Concerns have been raised about potentially irreversible brain damage and damage to the neuroendocrine system during development when treating attention-deficit/hyperactivity disorder with lisdexamfetamine (LDX), a norepinephrine dopamine reuptake inhibitor. This study aims to elucidate the potential adverse effects of LDX on the male reproductive system due to its widespread use and potential for abuse. In this study, adult male rats were randomized into control and LDX groups. Thirty milligrams per kilogram LDX was administered orally for 3 weeks. After isolation of epididymal spermatozoa, the rats were euthanized and testicular tissues were collected for stereological and molecular analyses. The LDX group showed a decrease in sperm motility and an increase in DNA fragmentation compared to the control group. There was also a dramatic decrease in testosterone in the LDX group. Testicular expression of caspase-3 and TNF-α was significantly increased in the LDX group. According to our findings, prolonged use of LDX leads to reduced sperm quality. It also induces apoptosis, inflammatory response, and pathological changes in the testicular tissue. What we have observed in this study is noteworthy but requires further investigation, particularly in people who use LDX over a longer period of time.


Assuntos
Apoptose , Dimesilato de Lisdexanfetamina , Motilidade dos Espermatozoides , Espermatozoides , Testículo , Animais , Masculino , Apoptose/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/patologia , Dimesilato de Lisdexanfetamina/toxicidade , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Ratos Sprague-Dawley , Inflamação/induzido quimicamente , Inflamação/patologia , Ratos , Testosterona , Fragmentação do DNA/efeitos dos fármacos , Caspase 3/metabolismo
7.
Clin Biochem ; 121-122: 110684, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37944628

RESUMO

Sudden sensorineural hearing loss (SSNHL) is defined as hearing loss of more than 30 dB in less than 72 h. SSNHL is a frequent complaint and an emergency in otolaryngology. Various biomarkers have been used to determine the prognosis of SSNHL. This systematic review and meta-analysis aims to evaluate the relationship between the different biomarkers and the prognosis of SSNHL. We searched English-language literature up to October 2022 in four databases, including PubMed, Google Scholar, Cochrane, and Science Direct. This search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. This study was reported in the International Prospective Register of Systematic Reviews (PROSPERO) database (ID = CRD42022369538). All studies examining the role of neutrophil to lymphocyte ratio (NLR) concluded that higher NLR is associated with a worse prognosis. The results of studies regarding the relationship between platelet to lymphocyte ratio (PLR) and tumor necrosis factor (TNF) are controversial. Other factors shown to be associated with SSNHL include Glycated hemoglobin (HbA1C), blood glucose, iron levels, serum endocan, salusin-beta, and bone turnover biomarkers. This meta-analysis showed that PLR, NLR, and neutrophils were significantly different between recovered and non-recovered patients. PLR, NLR, and neutrophil count are reliable tools to assess the prognosis of patients with SSNHL.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva Súbita , Humanos , Biomarcadores , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Súbita/diagnóstico , Linfócitos , Neutrófilos , Prognóstico
8.
Lasers Med Sci ; 38(1): 114, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37103593

RESUMO

Testicular heat stress leads to impairment of spermatogenesis in mammals. Involved mechanism in this vulnerability to heat-induced injury remains unclear, and research is being conducted to find an approach to reverse spermatogenesis arrest caused by hyperthermia. Recently, different studies have utilized photobiomodulation therapy (PBMT) therapy for the improvement of sperm criteria and fertility. This study aimed at evaluating the effect of PBMT on the improvement of spermatogenesis in mouse models of hyperthermia-induced azoospermia. A total of 32 male NMRI mice were equally divided into four groups consisting of control, hyperthermia, hyperthermia + Laser 0.03 J/cm2, and hyperthermia + Laser 0.2 J/cm2. To induce scrotal hyperthermia, mice were anesthetized and placed in a hot water bath at 43 °C for 20 min for 5 weeks. Then, PBMT was operated for 21 days using 0.03 J/cm2 and 0.2 J/cm2 laser energy densities in the Laser 0.03 and Laser 0.2 groups, respectively. Results revealed that PBMT with lower intensity (0.03 J/cm2) increased succinate dehydrogenase (SDH) activity and glutathione (GSH)/oxidized glutathione (GSSG) ratio in hyperthermia-induced azoospermia mice. At the same time, low-level PBMT reduced reactive oxygen species (ROS), mitochondrial membrane potential, and lipid peroxidation levels in the azoospermia model. These alterations accompanied the restoration of spermatogenesis manifested by the elevated number of testicular cells, increased volume and length of seminiferous tubules, and production of mature spermatozoa. After conducting experiments and analyzing the results, it has been revealed that the use of PBMT at a dosage of 0.03 J/cm2 has shown remarkable healing effects in the heat-induced azoospermia mouse model.


Assuntos
Azoospermia , Hipertermia Induzida , Terapia com Luz de Baixa Intensidade , Humanos , Masculino , Camundongos , Animais , Azoospermia/etiologia , Azoospermia/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , Temperatura Alta , Sêmen , Testículo , Glutationa , Mamíferos
9.
J Lasers Med Sci ; 14: e65, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38318218

RESUMO

Introduction: Biophoton emission, the spontaneous release of photons from living cells, has emerged as an attractive field of research in the study of biological systems. Scientists have recently discovered that changes in biophoton emission could serve as potential indicators of pathological conditions. This intriguing phenomenon suggests that cells might communicate and interact with each other through the exchange of these faint but significant light signals. Therefore, the present study introduces intercellular relationships with biophoton release to detect normal and abnormal cell functions to further achieve cellular interactions by focusing on cell and cell arrangement in disease conditions. Methods: Twenty male mice were assigned to control and busulfan groups. Five weeks after the injection of busulfan, the testis was removed, and then the stereological techniques and TUNEL assay were applied to estimate the histopathology of the testis tissue sections. Results: The findings revealed that the ultra-weak biophoton emission in the control group was significantly lower than in the busulfan group. The oligospermia mice model showed that it significantly changed the spatial arrangement of testicular cells and notably decreased the testis volume, length of seminiferous tubules, and the number of testicular cells. The results of the TUNEL assay showed that the percentage of apoptotic cells significantly increased in the busulfan group. Conclusion: The ultra-weak biophoton emission from testis tissue was reduced in oligospermia mice. As a result, the decline of ultra-weak biophoton can indicate a change in cell arrangement, a decrease in intercellular interaction, and eventually disease.

10.
Bratisl Lek Listy ; 123(12): 901-907, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36342878

RESUMO

BACKGROUND: Using neural stem cells (NSCs) in cell therapy and regenerative medicine is a growing knowledge. In this study, the protective role of carnosic acid and trehalose against H2O2-induced oxidative stress in autophagy induction and apoptosis inhibition in NSCs was investigated. MATERIAL AND METHODS: The bone marrow stromal cells (BMSCs) were isolated from the femur of the rat and differentiated into NSCs using basic fibroblast and epidermal growth factors (bFGF and EGF), and B27 serum free media. To evaluate the autophagy, the P62 protein was assessed by immunocytochemistry and LC3II / LC3I ratio by Western blotting. Further, we used 3-Methyladenine (3-MA), a widely used autophagy inhibitor to study whether combined treatment of 3-MA with carnosic acid and trehalose modulates autophagy in NSCs. For studying apoptosis, the cleaved caspase-3 protein was evaluated. Carnosic acid and trehalose increased the survival of the NSCs. RESULTS: The H2O2 decreased the autophagy and induced apoptosis with increasing time during 24 hours, however, a pre-treatment with 2 µM carnosic acid and trehalose 3 % induced the autophagy proteins (while increasing the LC3II / LC3I ratio and decreasing the P62) and decreased the apoptosis (while decreasing the expression of the cleaved caspase-3). The results showed that the carnosic acid and trehalose increased the survival of NSCs against the oxidative stress caused by H2O2, decreased apoptosis, and induced autophagy. CONCLUSION: Due to the carnosic acid and trehalose unique properties and its low toxicity, it can be used as an agent in cellular transplantation for reducing oxidative stress and inducing autophagy (Fig. 4, Ref. 37).


Assuntos
Peróxido de Hidrogênio , Células-Tronco Neurais , Ratos , Animais , Caspase 3 , Peróxido de Hidrogênio/toxicidade , Trealose , Regulação para Baixo , Apoptose
11.
Metab Brain Dis ; 37(8): 2677-2685, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36074314

RESUMO

A gradual degeneration of the striatum and loss of nigral dopamine cells are characteristic of Parkinson's disease. Nowadays, combination therapy for neurodegenerative disease is considered. This study aimed to investigate the effects of melatonin and dopaminergic neurons derived from adipose tissue stem cells (ADSCs) in a rat model of Parkinson's disease. Parkinson's disease was induced in rats using neurotoxin 6-Hydroxydopamine. The treatment was performed using melatonin and dopaminergic neurons transplantation. Subsequently, behavioral tests, western blot analysis for Caspase-3 expression, GSH (Glutathione) content and stereology analysis for the volume and cell number of substantia nigra and striatum were performed. Treatment with melatonin and dopaminergic neuron transplantation increased the number of neurons in substantia nigra and striatum while the number of glial cell and the volume of substantia nigra and striatum did not show significant change between groups. Western blot analysis for caspase 3 indicated the significant differences between groups. The results also indicated the increased level of glutathione (GSH) content in treatment groups. this study showed that combination therapy with melatonin and dopaminergic neurons could greatly protect the neurons, reduce oxidative stress and improve the symptoms of PD.


Assuntos
Melatonina , Doenças Neurodegenerativas , Doença de Parkinson , Ratos , Animais , Neurônios Dopaminérgicos , Melatonina/farmacologia , Melatonina/uso terapêutico , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Doenças Neurodegenerativas/metabolismo , Ratos Sprague-Dawley , Substância Negra , Estresse Oxidativo , Morte Celular , Glutationa/metabolismo
12.
Mol Cell Neurosci ; 121: 103752, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35781072

RESUMO

Hearing is mainly dependent on the function of hair cells (HCs) and spiral ganglion neurons (SGNs) which damage or loss of them leads to irreversible hearing loss. Olfactory ensheathing cells (OECs) are specialized glia that forms the fascicles of the olfactory nerve by surrounding the olfactory sensory axons. The OECs, as a regenerating part of the nervous system, play a supporting function in axonal regeneration and express a wide range of growth factors. In addition, retinoic acid (RA) enhances the proliferation and differentiation of these cells into the nerve. In the present study, we co-cultured human OECs (hOECs) with cochlear SGNs in order to determine whether hOECs and RA co-treatment can protect the repair process in gentamycin-induced SGNs damage in vitro. For this purpose, cochlear cultures were prepared from P4 Wistar rats, which were randomly appointed to four groups: normal cultivated SGNs (Control), gentamicin-lesioned SGNs culture (Gent), gentamicin-lesioned SGNs culture treated with OECs (Gent + OECs) and gentamicin-lesioned SGNs culture co-treated with OECs and RA (Gent + OEC& RA). The expression of a specific protein in SGNs was examined using immunohistochemical and Western blotting technique. TUNEl staining was used to detect cell apoptosis. Here, we revealed that combined treatment of OECs and RA protect synapsin and Tuj-1 expression in the lesioned SGNs and attenuate cell apoptosis. These findings suggest that RA co-treatment can enhance efficiency of OECs in repair of SGNs damage induced by ototoxic drug.


Assuntos
Gânglio Espiral da Cóclea , Tretinoína , Animais , Células Cultivadas , Gentamicinas/toxicidade , Humanos , Neurônios , Bulbo Olfatório , Ratos , Ratos Wistar , Tretinoína/farmacologia
13.
Apoptosis ; 27(11-12): 852-868, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35876935

RESUMO

Recent investigations of COVID-19 have largely focused on the effects of this novel virus on the vital organs in order to efficiently assist individuals who have recovered from the disease. In the present study we used hippocampal tissue samples extracted from people who died after COVID-19. Utilizing histological techniques to analyze glial and neuronal cells we illuminated a massive degeneration of neuronal cells and changes in glial cells morphology in hippocampal samples. The results showed that in hippocampus of the studied brains there were morphological changes in pyramidal cells, an increase in apoptosis, a drop in neurogenesis, and change in spatial distribution of neurons in the pyramidal and granular layer. It was also demonstrated that COVID-19 alter the morphological characteristics and distribution of astrocyte and microglia cells. While the exact mechanism(s) by which the virus causes neuronal loss and morphology in the central nervous system (CNS) remains to be determined, it is necessary to monitor the effect of SARS-CoV-2 infection on CNS compartments like the hippocampus in future investigations. As a result of what happened in the hippocampus secondary to COVID-19, memory impairment may be a long-term neurological complication which can be a predisposing factor for neurodegenerative disorders through neuroinflammation and oxidative stress mechanisms.


Assuntos
COVID-19 , Humanos , Apoptose , SARS-CoV-2 , Neurogênese/fisiologia , Hipocampo , Causalidade
14.
Biotech Histochem ; 97(2): 107-117, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33843374

RESUMO

Busulfan (BSU) is a chemotherapeutic drug that can cause subfertility or sterility in males. We investigated the effects of adipose tissue-derived mesenchymal stem cells (AT-MSC) conditioned medium (CM) (AT-MSC-CM) on histopathological and molecular characteristics of mouse testes exposed to BSU using stereology. We used adult male mice divided randomly into five groups: control, Dulbecco's modified Eagle's medium (DMEM), dimethyl sulfoxide (DMSO), BSU, and BSU + CM. Thirty-five days following BSU injection, sperm and testis tissues were harvested for stereological and molecular studies. The BSU group exhibited significantly reduced testis volume, interstitium and tubules compared to the other groups, although the volume of the testis remained unchanged for BSU and CM groups. The number of testis cells was reduced in the BSU group compared to the other groups. The CM group exhibited a significantly increased number of testis cells compared to the BSU group. Sperm count and motility, and length density of seminiferous tubules were increased in CM group compared to the BSU group. AT-MSC-CM exhibited ameliorative effects on histopathologic changes of mouse testes exposed to BSU.


Assuntos
Infertilidade Masculina , Células-Tronco Mesenquimais , Animais , Bussulfano/toxicidade , Meios de Cultivo Condicionados/farmacologia , Masculino , Camundongos , Espermatogênese , Testículo
15.
Apoptosis ; 26(7-8): 415-430, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34076792

RESUMO

To evaluate the incidence of apoptosis within the testes of patients who died from severe acute respiratory syndrome coronavirus 2 (COVID-19) complications, testis tissue was collected from autopsies of COVID-19 positive (n = 6) and negative men (n = 6). They were then taken for histopathological experiments, and RNA extraction, to examine the expression of angiotensin-converting enzyme 2 (ACE2), transmembrane protease, serine 2 (TMPRSS2), BAX, BCL2 and Caspase3 genes. Reactive oxygen species (ROS) production and glutathione disulfide (GSH) activity were also thoroughly examined. Autopsied testicular specimens of COVID-19 showed that COVID-19 infection significantly decreased the seminiferous tubule length, interstitial tissue and seminiferous tubule volume, as well as the number of testicular cells. An analysis of the results showed that the Johnsen expressed a reduction in the COVID-19 group when compared to the control group. Our data showed that the expression of ACE2, BAX and Caspase3 were remarkably increased as well as a decrease in the expression of BCL2 in COVID-19 cases. Although, no significant difference was found for TMPRSS2. Furthermore, the results signified an increase in the formation of ROS and suppression of the GSH activity as oxidative stress biomarkers. The results of immunohistochemistry and TUNEL assay showed that the expression of ACE2 and the number of apoptotic cells significantly increased in the COVID-19 group. Overall, this study suggests that COVID-19 infection causes spermatogenesis disruption, probably through the oxidative stress pathway and subsequently induces apoptosis.


Assuntos
COVID-19/complicações , Estresse Oxidativo/fisiologia , SARS-CoV-2/patogenicidade , Espermatogênese/fisiologia , Testículo/virologia , Apoptose , Humanos , Masculino , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Serina Endopeptidases/metabolismo , Testículo/metabolismo
16.
J Chem Neuroanat ; 114: 101956, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33831513

RESUMO

Noise-induced hearing loss (NIHL) is the second most common cause of acquired hearing loss. Acoustic trauma can cause oxidative damage in the cochlear hair cells (HCs) through apoptotic pathways. Apelin is a newly discovered neuropeptide with neuroprotective effects against the oxidative stress in neurodegenerative disorder. We investigated the preventive effects of apelin-13 on the cochlear HCs and spiral ganglion neurons (SGNs) against acoustic trauma via Sirtuin-1 (Sirt-1) regulation in rats. Animals were assigned to control, control + apelin-13 (50 or 100 µg/kg, ip), and noise exposure groups without any treatment or were administered apelin-13 (50 or 100 µg/kg, ip) and EX-527 (an inhibitor of Sirt-1) prior to each noise session. In the noise groups, 110 dB white noise was applied for 6 h per 5 days. Pre- and post-exposure distortion product otoacoustic emissions (DPOAE) and cochlear superoxide dismutase (SOD) activity were assessed. Western blot evaluated the cochlear protein expressions of Sirt-1, cleaved-caspase-3, Bax, and Bcl-2. Cell apoptosis was detected through TUNEL staining. Immunofluorescence was used to examine expression of HCs and SGNs specific protein. DPOAE level were significantly improved in the noise exposure group receiving 100 µg/kg apelin-13. At high doses, apelin augmented SOD levels in the rat cochlea subjected to noise. Apelin 100 markedly increased Sirt-1, and decreased cleaved- caspase-3 expression as well as Bax/Bcl-2 ratio in the cochlea tissue of noise-exposed rats. These findings suggest the promising therapeutic potential of apelin-13 for the prevention of noise-induced injury to cochlea and hearing loss.


Assuntos
Cóclea/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/patologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fármacos Neuroprotetores/farmacologia , Sirtuína 1/biossíntese , Animais , Apoptose/efeitos dos fármacos , Cóclea/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/metabolismo , Masculino , Ratos , Ratos Wistar
17.
Cell J ; 23(1): 109-118, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33650827

RESUMO

OBJECTIVE: In vitro maturation (IVM) of human oocytes is used to induce meiosis progression in immature retrieved oocytes. Calcium (Ca2+) has a central role in oocyte physiology. Passage through meiosis phase to another phase is controlled by increasing intracellular Ca2+. Therefore, the current research was conducted to evaluate the role of calcium ionophore (CI) on human oocyte IVM. MATERIALS AND METHODS: In this clinical trial study, immature human oocytes were obtained from 216 intracytoplasmic sperm injection (ICSI) cycles. After ovarian stimulation, germinal vesicle (GV) stage oocytes were collected and categorized into two groups: with and without 10 µM CI treatment. Next, oocyte nuclear maturation was assessed after 24-28 hours of culture. Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to assess the transcript profile of several oocyte maturation-related genes (MAPK3, CCNB1, CDK1, and cyclin D1 [CCND1]) and apoptotic-related genes (BCL-2, BAX, and Caspase-3). Oocyte glutathione (GSH) and reactive oxygen species (ROS) levels were assessed using Cell Tracker Blue and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) fluorescent dye staining. Oocyte spindle configuration and chromosome alignment were analysed by immunocytochemistry. RESULTS: The metaphase II (MII) oocyte rate was higher in CI-treated oocytes (73.53%) compared to the control (67.43%) group, but this difference was not statistically significant (P=0.13). The mRNA expression profile of oocyte maturation-related genes (MAPK3, CCNB1, CDK1, and CCND1) (P<0.05) and the anti-apoptotic BCL-2 gene was remarkably up-regulated after treatment with CI (P=0.001). The pro-apoptotic BAX and Caspase-3 relative expression levels did not change significantly. The CI-treated oocyte cytoplasm had significantly higher GSH and lower ROS (P<0.05). There was no statistically significant difference in meiotic spindle assembly and chromosome alignment between CI treatment and the control group oocytes. CONCLUSION: The finding of the current study supports the role of CI in meiosis resumption of human oocytes. (Registration Number: IRCT20140707018381N4).

18.
Reprod Sci ; 28(2): 371-380, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32780358

RESUMO

Spermatogenesis process is sensitive to heat stress because the testicular temperature is 2 to 4 °C lower than the core body temperature. The current study aimed to investigate the effects of iron oxide nanoparticles containing curcumin on spermatogenesis in mice induced by long-term scrotal hyperthermia. In this experimental study, 18 mice were equally divided into the following three groups: control, scrotal hyperthermia, and scrotal hyperthermia + curcumin-loaded iron particles (NPs) (240 µL) (mice were treated for 20 days). Hyperthermia was induced by exposure to the temperature of 43 °C for 20 min every other day for 5 weeks. Afterward, the animals were euthanized; sperm samples were collected for sperm parameters analysis, and testis samples were taken for histopathology experiments, evaluation of serum testosterone level, and RNA extraction in order to examine the expression of c-kit, STRA8 and PCNA genes. Our study showed that curcumin-loaded iron particles could notably increase the volume of testis, length of seminiferous tubules, sperm parameters, and stereological parameters (i.e., spermatogonia, primary spermatocyte, round spermatid, and Leydig cells) thereby increasing serum testosterone level; in addition, TUNEL-positive cells showed a significant decrease in curcumin-loaded iron particle group. Thus, based on the obtained results, the expression of c-kit, STRA8, and PCNA genes was significantly increased in treatment groups by curcumin-loaded iron particles compared with scrotal hyperthermia-induced mice. In conclusion, curcumin-loaded iron particles can be considered an alternative treatment for improving the spermatogenesis process in scrotal hyperthermia-induced mice.


Assuntos
Azoospermia/tratamento farmacológico , Curcumina/farmacologia , Portadores de Fármacos , Fármacos para a Fertilidade Masculina/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro/química , Espermatogênese/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Azoospermia/sangue , Azoospermia/etiologia , Azoospermia/patologia , Biomarcadores/sangue , Curcumina/química , Modelos Animais de Doenças , Composição de Medicamentos , Fármacos para a Fertilidade Masculina/química , Hipertermia Induzida , Masculino , Camundongos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Espermatozoides/metabolismo , Espermatozoides/patologia , Testículo/metabolismo , Testículo/patologia , Testículo/fisiopatologia , Testosterona/sangue , Fatores de Tempo
19.
Int J Nanomedicine ; 15: 3903-3920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606657

RESUMO

BACKGROUND: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue accessibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. PURPOSE: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. MATERIALS AND METHODS: In order to achieve a sustained release of T3, this factor was encapsulated within chitosan nanoparticles and chitosan-loaded T3 was incorporated within PCL nanofibers. Polyaniline graphene (PAG) nanocomposite was incorporated within gelatin nanofibers to endow the scaffold with conductive properties, which resemble the conductive behavior of axons. Biodegradation, water contact angle measurements, and scanning electron microscopy (SEM) observations as well as conductivity tests were used to evaluate the properties of the prepared scaffold. The concentration of PAG and T3-loaded chitosan NPs in nanofibers were optimized by examining the proliferation of cultured bone marrow-derived mesenchymal stem cells (BMSCs) on the scaffolds. The differentiation of BMSCs-derived NSCs cultured on the fabricated scaffolds into OLCs was analyzed by evaluating the expression of oligodendrocyte markers using immunofluorescence (ICC), RT-PCR and flowcytometric assays. RESULTS: Incorporating 2% PAG proved to have superior cell support and proliferation while guaranteeing electrical conductivity of 10.8 × 10-5 S/cm. Moreover, the scaffold containing 2% of T3-loaded chitosan NPs was considered to be the most biocompatible samples. Result of ICC, RT-PCR and flow cytometry showed high expression of O4, Olig2, platelet-derived growth factor receptor-alpha (PDGFR-α), O1, myelin/oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP) high expressed but low expression of glial fibrillary acidic protein (GFAP). CONCLUSION: Considering surface topography, biocompatibility, electrical conductivity and gene expression, the hybrid PCL/gelatin scaffold with the controlled release of T3 may be considered as a promising candidate to be used as an in vitro model to study patient-derived oligodendrocytes by isolating patient's BMSCs in pathological conditions such as diseases or injuries. Moreover, the resulted oligodendrocytes can be used as a desirable source for transplanting in patients.


Assuntos
Materiais Biomiméticos/farmacologia , Células da Medula Óssea/citologia , Diferenciação Celular , Nanofibras/química , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Alicerces Teciduais/química , Compostos de Anilina/química , Animais , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condutividade Elétrica , Gelatina/química , Grafite/química , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/ultraestrutura , Células-Tronco Neurais/metabolismo , Oligodendroglia/efeitos dos fármacos , Poliésteres/química , Ratos , Suínos , Tri-Iodotironina/farmacologia
20.
Bioimpacts ; 10(2): 73-85, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363151

RESUMO

Introduction: Simulating hydrophobic-hydrophilic composite face with hierarchical porous and fibrous architectures of bone extracellular matrix (ECM) is a key aspect in bone tissue engineering. This study focused on the fabrication of new three-dimensional (3D) scaffolds containing polytetrafluoroethylene (PTFE), and polyvinyl alcohol (PVA), with and without graphene oxide (GO) nanoparticles using the chemical cross-linking and freeze-drying methods for bone tissue application. The effects of GO on physicochemical features and osteoinduction properties of the scaffolds were evaluated through an in vitro study. Methods: After synthesizing the GO nanoparticles, two types of 3D scaffolds, PTFE/PVA (PP) and PTFE/PVA/GO (PPG), were developed by cross-linking and freeze-drying methods. The physicochemical features of scaffolds were assessed and the interaction of the 3D scaffold types with human adipose mesenchymal stem cells (hADSCs) including attachment, proliferation, and differentiation to osteogenic like cells were investigated. Results: GO nanoparticles were successfully synthesized with no agglomeration. The blending of PTFE as a hydrophobic polymer with PVA polymer and GO nanoparticles (hydrophilic compartments) were successful. Two types of 3D scaffolds had nano topographical structures, good porosities, hydrophilic surfaces, thermal stabilities, good stiffness, as well as supporting the cell attachments, proliferation, and osteogenic differentiation. Notably, GO incorporating scaffolds provided a better milieu for cell behaviors. Conclusion: Novel multiscale porous nanofibrous 3D scaffolds made from PTFE/ PVA polymers with and without GO nanoparticles could be an ideal candidate for bone tissue engineering as a 3D template.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...