Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001464

RESUMO

Y-90 Selective Internal Radiotherapy (SIRT) is an ablative therapy used for inoperable liver metastasis. The purpose of this investigation was to examine the impact of local control after SIRT on overall survival (OS) in oligometastatic patients. A retrospective, single-institution study identified oligometastatic patients with ≤5 non-intracranial metastases receiving unilateral or bilateral lobar Y-90 SIRT from 2009 to 2021. The primary endpoint was OS defined from Y-90 SIRT completion to the date of death or last follow-up. Local failure was classified as a progressive disease at the target lesion(s) by RECIST v1.1 criteria starting at 3 months after SIRT. With a median follow-up of 15.7 months, 33 patients were identified who had a total of 79 oligometastatic lesions treated with SIRT, with the majority histology of colorectal adenocarcinoma (n = 22). In total, 94% of patients completed the Y-90 lobectomy. Of the 79 individual lesions treated, 22 (27.8%) failed. Thirteen patients received salvage liver-directed therapy following intrahepatic failure; ten received repeat SIRT. Median OS (mOS) was 20.1 months, and 12-month OS was 68.2%. Intralesional failure was associated with worse 1 y OS (52.3% vs. 86.2%, p = 0.004). These results suggest that intralesional failure following Y-90 may be associated with inferior OS, emphasizing the importance of disease control in low-metastatic-burden patients.

2.
Adv Radiat Oncol ; 6(2): 100617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912733

RESUMO

PURPOSE: Selective internal radiation therapy (SIRT) is administered to treat tumors of the liver and is generally well tolerated. Although widely adopted for its therapeutic benefits, SIRT is rarely combined with external beam radiation therapy (EBRT) owing to the complexity of the dosimetry resulting from the combination of treatments with distinct radiobiological effects. The purpose of this study was to establish a dosimetric framework for combining SIRT and EBRT using clinical experience derived from representative patients with hepatocellular carcinoma (HCC) who received both therapies. METHODS AND MATERIALS: Treatments from 10 patients with HCC given EBRT either before or after SIRT were analyzed. The dosimetry framework used here considered differences in the radiobiological effects and fractionation schemes of SIRT versus EBRT, making use of the concepts of biological effective dose (BED) and equivalent dose (EQD). Absorbed dose from SIRT was calculated, converted to BED, and summed with BED from EBRT dose plans. Two of these patients were used in a virtual planning exercise to investigate the feasibility of combining stereotactic body radiation therapy and SIRT. RESULTS: The combination of EBRT and SIRT in 10 patients with HCC showed no major toxicity. No Child-Pugh scores went above 8 and albumin-bilirubin scores from only 1 patient worsened to grade 3 (> -1.39) from treatment through 3-months follow-up. A framework with radiobiological modeling was developed to manage the combined treatments in terms of their sum BED. The exploratory SIRT plus SABR inverse dose plans for 2 patients, incorporating radiobiologically informed 90Y SIRT dosimetry, achieved dose distributions comparable to SBRT alone. CONCLUSIONS: Treatment with both EBRT and SIRT can be given safely to patients with HCC. The BED and EQD concepts should be used in combined dosimetry to account for the differing radiobiological effects of EBRT and SIRT. Inverse dose planning of EBRT after SIRT could provide improved dose distributions and flexibility to the clinical workflow. Further research into combination therapy is needed through prospective trials.

3.
J Nucl Med ; 61(11): 1658-1664, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32358093

RESUMO

The purpose of this study was to establish the dose-response relationship of selective internal radiation therapy (SIRT) in patients with metastatic colorectal cancer (mCRC), when informed by radiobiological sensitivity parameters derived from mCRC cell lines exposed to 90Y. Methods: Twenty-three mCRC patients with liver metastases refractory to chemotherapy were included. 90Y bremsstrahlung SPECT images were transformed into dose maps assuming the local dose deposition method. Baseline and follow-up CT scans were segmented to derive liver and tumor volumes. Mean, median, and D70 (minimum dose to 70% of tumor volume) values determined from dose maps were correlated with change in tumor volume and volumetric RECIST response using linear and logistic regression, respectively. Radiosensitivity parameters determined by clonogenic assays of mCRC cell lines HT-29 and DLD-1 after exposure to 90Y or external beam radiotherapy (EBRT; 6 MV photons) were used in biologically effective dose (BED) calculations. Results: Mean administered radioactivity was 1,469 ± 428 MBq (range, 847-2,185 MBq), achieving a mean absorbed radiation dose to tumor of 35.5 ± 9.4 Gy and mean normal liver dose of 26.4 ± 6.8 Gy. A 1.0 Gy increase in mean, median, and D70 absorbed dose was associated with a reduction in tumor volume of 1.8%, 1.8%, and 1.5%, respectively, and an increased probability of a volumetric RECIST response (odds ratio, 1.09, 1.09, and 1.10, respectively). Threshold mean, median and D70 doses for response were 48.3, 48.8, and 41.8 Gy, respectively. EBRT-equivalent BEDs for 90Y are up to 50% smaller than those calculated by applying protraction-corrected radiobiological parameters derived from EBRT alone. Conclusion: Dosimetric studies have assumed equivalence between 90Y SIRT and EBRT, leading to inflation of BED for SIRT and possible undertreatment. Radiobiological parameters for 90Y were applied to a BED model, providing a calculation method that has the potential to improve assessment of tumor control.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/secundário , Radioisótopos de Ítrio/uso terapêutico , Idoso , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Radiobiologia , Dosagem Radioterapêutica , Tomografia Computadorizada de Emissão de Fóton Único
4.
Phys Med Biol ; 64(13): 135018, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31117062

RESUMO

Approximately 50% of all colorectal cancer (CRC) patients will develop metastasis to the liver. 90Y selective internal radiation therapy (SIRT) is an established treatment for metastatic CRC. There is still a fundamental lack of understanding regarding the radiobiology underlying the dose response. This study was designed to determine the radiosensitivity of two CRC cell lines (DLD-1 and HT-29) to 90Y ß - radiation exposure, and thus the relative effectiveness of 90Y SIRT in relation to external beam radiotherapy (EBRT). A 90Y-source dish was sandwiched between culture dishes to irradiate DLD-1 or HT-29 cells for a period of 6 d. Cell survival was determined by clonogenic assay. Dose absorbed per 90Y disintegration was calculated using the PENELOPE Monte Carlo code. PENELOPE simulations were benchmarked against relative dose measurements using EBT3 GAFchromic™ film. Statistical regression based on the linear-quadratic model was used to determine the radiosensitivity parameters [Formula: see text] and [Formula: see text] using R. These results were compared to radiosensitivity parameters determined for 6 MV clinical x-rays and 137Cs γ-ray exposure. Equivalent dose of EBRT in 2 Gy ([Formula: see text]) and 10 Gy ([Formula: see text]) fractions were derived for 90Y dose. HT-29 cells were more radioresistant than DLD-1 for all treatment modalities. Radiosensitivity parameters determined for 6 MV x-rays and 137Cs γ-ray were equivalent for both cell lines. The [Formula: see text] ratio for 90Y ß --particle exposure was over an order of magnitude higher than the other two modalities due to protraction of dose delivery. Consequently, an 90Y SIRT absorbed dose of 60 Gy equates to an [Formula: see text] of 28.7 and 54.5 Gy and an [Formula: see text] of 17.6 and 19.3 Gy for DLD-1 and HT-29 cell lines, respectively. We derived radiosensitivity parameters for two CRC cell lines exposed to 90Y ß --particles, 6 MV x-rays, and 137Cs γ-ray irradiation. These radiobiological parameters are critical to understanding the dose response of CRC lesions and ultimately informs the efficacy of 90Y SIRT relative to other radiation therapy modalities.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Colorretais/radioterapia , Embolização Terapêutica , Tolerância a Radiação , Radioisótopos de Ítrio/uso terapêutico , Partículas beta/uso terapêutico , Raios gama/uso terapêutico , Humanos , Método de Monte Carlo , Radiobiologia , Planejamento da Radioterapia Assistida por Computador
5.
Mol Biol Cell ; 24(19): 3056-68, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23924897

RESUMO

In vitro and in vivo studies implicate occludin in the regulation of paracellular macromolecular flux at steady state and in response to tumor necrosis factor (TNF). To define the roles of occludin in these processes, we established intestinal epithelia with stable occludin knockdown. Knockdown monolayers had markedly enhanced tight junction permeability to large molecules that could be modeled by size-selective channels with radii of ~62.5 Å. TNF increased paracellular flux of large molecules in occludin-sufficient, but not occludin-deficient, monolayers. Complementation using full-length or C-terminal coiled-coil occludin/ELL domain (OCEL)-deficient enhanced green fluorescent protein (EGFP)-occludin showed that TNF-induced occludin endocytosis and barrier regulation both required the OCEL domain. Either TNF treatment or OCEL deletion accelerated EGFP-occludin fluorescence recovery after photobleaching, but TNF treatment did not affect behavior of EGFP-occludin(ΔOCEL). Further, the free OCEL domain prevented TNF-induced acceleration of occludin fluorescence recovery, occludin endocytosis, and barrier loss. OCEL mutated within a recently proposed ZO-1-binding domain (K433) could not inhibit TNF effects, but OCEL mutated within the ZO-1 SH3-GuK-binding region (K485/K488) remained functional. We conclude that OCEL-mediated occludin interactions are essential for limiting paracellular macromolecular flux. Moreover, our data implicate interactions mediated by the OCEL K433 region as an effector of TNF-induced barrier regulation.


Assuntos
Mucosa Intestinal/metabolismo , Ocludina/metabolismo , Junções Íntimas/genética , Fator de Necrose Tumoral alfa/metabolismo , Células CACO-2 , Endocitose/genética , Técnicas de Silenciamento de Genes , Humanos , Ocludina/química , Ocludina/genética , Permeabilidade , Ligação Proteica , Estrutura Terciária de Proteína/genética , Deleção de Sequência , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...