Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 256: 106412, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36716652

RESUMO

Oil spills that occur in high traffic coastal environments can have profound consequences for the health of marine ecosystems and the commercial and social interests that are dependent upon these habitats. Given that the global reliance on marine fuels is not abating, it is imperative to develop sensitive and robust tools to monitor oil contamination and remediation in a timely manner. Such tools are increasingly important for ascertaining the immediate and long-term effects of oil contamination on species of interest and local habitats as water-soluble components of oils, such as polycyclic aromatic hydrocarbons (PAHs), can persist post-remediation. We previously demonstrated that 3-methylcholanthrene responsive cytochrome P450-1a (cyp1a1) transcript abundance in the liver and caudal fin of coho salmon smolts (Onchorhynchus kisutch) was sensitive to exposure to low sulfur marine diesel (LSMD) seawater accommodated fractions (seaWAF) in cold water. We expanded upon this paradigm by assessing the utility of the cyp1a1 transcript to track both exposure to LSMD seaWAF and recovery from exposure by measuring cyp1a1 abundance in coho smolts using quantitative polymerase chain reaction (qPCR). Smolts were exposed to either 100 mg/L LSMD seaWAF or clean seawater (control) for 4 days. Fish were then transferred to clean seawater for depuration and tissues sampled at 0, 1, 2, 4, and 8 days from both treatments. Livers and caudal fins were dissected from 40 smolts per group (ntotal = 400 smolts). The LSMD seaWAF-induced cyp1a1 transcript levels significantly decreased one day after depuration in the liver and caudal fin in a sex-independent manner in genotyped females and males. After four days of depuration, cyp1a1 transcript abundance decreased to baseline control levels, regardless of tissue or sex. The present study demonstrates the value of using the caudal fin as a reliable, sensitive, and non-lethal sampling and monitoring tool.


Assuntos
Oncorhynchus kisutch , Poluentes Químicos da Água , Animais , Masculino , Feminino , Água , Oncorhynchus kisutch/genética , Ecossistema , Poluentes Químicos da Água/toxicidade , Sistema Enzimático do Citocromo P-450 , Enxofre
2.
Arch Environ Contam Toxicol ; 80(4): 735-744, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33787960

RESUMO

Nonnutritive sweeteners used in food and beverage products are widespread, persistent aquatic pollutants. Despite this, their impact on aquatic organisms, particularly vertebrates, is not well-studied. Recent findings in rodents suggest sucralose, a chlorinated disaccharide, alters thyroid hormone (TH) metabolism. Because amphibian tadpole metamorphosis is TH-dependent, we hypothesized sucralose may alter signaling for this postembryonic developmental process. The present study used the American bullfrog, Rana (Lithobates) catesbeiana, as a sensitive, environmentally relevant model for testing TH disruption in the absence and presence of thyroxine (T4), a hormone that induces metamorphosis. Premetamorphic R. catesbeiana tadpoles were immersed in 1-, 15-, and 32-mg/L sucralose solutions ± 5 nM (3.9 µg/L) thyroxine (T4) for 48 h. RNA transcripts encoding thyroid hormone receptors alpha and beta (thra and thrb) and TH-induced basic region leucine zipper protein (thibz) were analyzed in four tissues: back skin, liver, olfactory epithelium, and tail fin, using reverse transcription quantitative real-time PCR (RT-qPCR). We found that sucralose altered the expression of fundamental TH-response genes involved in anuran metamorphosis in a tissue- and TH-status dependent manner. As organochlorines induce xenobiotic metabolism, we isolated and characterized three novel R. catesbeiana gene transcripts involved in xenobiotic metabolism: pregnane X receptor (nr1i2), constitutive androstane receptor (nr1i3), and cytochrome p450 3a4 (cyp3a4). We analyzed their expression using RT-qPCR and found evidence of their modulation by sucralose. To our knowledge, these data are the first to show xenobiotic and thyroid-disrupting activities in amphibians and further investigations into cumulative effects of environmental sucralose exposure are warranted.


Assuntos
Ranidae , Hormônios Tireóideos , Animais , Larva , Metamorfose Biológica , Rana catesbeiana , Ranidae/genética , Sacarose/análogos & derivados , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...