Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 115(5): 841-51, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21229996

RESUMO

The chemical transformations of formamide (NH(2)CHO), a molecule of prebiotic interest as a precursor for biomolecules, are investigated using methods of electronic structure computations and Rice-Rampserger-Kassel-Marcus (RRKM) theory. Specifically, quantum chemical calculations applying the coupled-cluster theory CCSD(T), whose energies are extrapolated to the complete basis set limit (CBS), are carried out to construct the [CH(3)NO] potential energy surface. RRKM theory is then used to systematically examine decomposition channels leading to the formation of small molecules including CO, NH(3), H(2)O, HCN, HNC, H(2), HNCO, and HOCN. The energy barriers for the decarboxylation, dehydrogenation, and dehydration processes are found to be in the range of 73-78 kcal/mol. H(2) loss is predicted to be a one-step process although a two-step process is competitive. CO elimination is found to prefer a two-step pathway involving the carbene isomer NH(2)CHO (aminohydroxymethylene) as an intermediate. This CO-elimination channel is also favored over the one-step H(2) loss, in agreement with experiment. The H(2)O loss is a multistep process passing through a formimic acid conformer, which subsequently undergoes a rate-limiting dehydration. The dehydration appears to be particularly favored in the low-temperature regime. The new feature identifies aminohydroxymethylene as a transient but crucial intermediate in the decarboxylation of formamide.


Assuntos
Formamidas/química , Modelos Químicos , Modelos Teóricos , Teoria Quântica , Simulação por Computador , Descarboxilação , Desidratação , Isomerismo , Termodinâmica
2.
J Phys Chem A ; 111(39): 9871-83, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17845015

RESUMO

A microcanonical unimolecular rate theory (MURT) model incorporating quantized surface vibrations and Rice-Ramsperger-Kassel-Marcus rate constants is applied to a benchmark system for gas-surface reaction dynamics, the activated dissociative chemisorption and associative desorption of hydrogen on Cu(111). Both molecular translation parallel to the surface and rotation are treated as spectator degrees of freedom. MURT analysis of diverse experiments indicates that one surface oscillator participates in the dissociative transition state and that the threshold energy for H2 dissociation on Cu(111) is E0 = 62 kJ/mol. The spectator approximation for rotation holds well at thermally accessible rotational energies (i.e., for Er less than approximately 40 kJ/mol). Over the temperature range from 300 to 1000 K, the calculated thermal dissociative sticking coefficient is ST = S0 exp(-Ea/kBT) where S0 = 1.57 and Ea = 62.9 kJ/mol. The sigmoid shape of rovibrational eigenstate-resolved dissociative sticking coefficients as a function of normal translational energy is shown to derive from an averaging of the microcanonical sticking coefficient, with threshold energy E0, over the thermal surface oscillator distribution of the gas-surface collision complexes. Given that H2/Cu(111) is one of the most dynamically biased of gas-surface reactive systems, the simple statistical MURT model simulates and broadly rationalizes the H2/Cu(111) reactive behavior with remarkable fidelity.

3.
J Phys Chem B ; 110(13): 6705-13, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16570976

RESUMO

The dissociative sticking coefficient for CH4 on Pt(111) has been measured as a function of both gas temperature (Tg) and surface temperature (Ts) using effusive molecular beam and angle-integrated ambient gas dosing methods. The experimental results are used to optimize the three parameters of a microcanonical unimolecular rate theory (MURT) model of the reactive system. The MURT calculations allow us to extract transition state properties from the data as well as to compare our data directly to other molecular beam and thermal equilibrium sticking measurements. We find a threshold energy for dissociation of E0 = 52.5 +/- 3.5 kJ mol(-1). Furthermore, the MURT with an optimized parameter set provides for a predictive understanding of the kinetics of this C-H bond activation reaction, that is, it allows us to predict the dissociative sticking coefficient of CH4 on Pt(111) for any combination of Ts and Tg even if the two are not equal to one another, indeed, the distribution of molecular energy need not even be thermal. Comparison of our results to those from recent thermal equilibrium catalysis studies on CH4 reforming over Pt nanoclusters ( approximately 2 nm diam) dispersed on oxide substrates indicates that the reactivity of Pt(111) exceeds that of the Pt nanocatalysts by several orders of magnitude.

4.
J Phys Chem B ; 110(13): 6714-20, 2006 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-16570977

RESUMO

The dissociative sticking coefficient for C2H6 on Pt(111) has been measured as a function of both gas temperature (Tg) and surface temperature (Ts) using effusive molecular beam and angle-integrated ambient gas dosing methods. A microcanonical unimolecular rate theory (MURT) model of the reactive system is used to extract transition state properties from the data as well as to compare our data directly with supersonic molecular beam and thermal equilibrium sticking measurements. We report for the first time the threshold energy for dissociation, E0 = 26.5 +/- 3 kJ mol(-1). This value is only weakly dependent on the other two parameters of the model. A strong surface temperature dependence in the initial sticking coefficient is observed; however, the relatively weak dependence on gas temperature indicates some combination of the following (i) not all molecular excitations are contributing equally to the enhancement of sticking, (ii) that strong entropic effects in the dissociative transition state are leading to unusually high vibrational frequencies in the transition state, and (iii) energy transfer from gas-phase rovibrational modes to the surface is surprisingly efficient. In other words, it appears that vibrational mode-specific behavior and/or molecular rotations may play stronger roles in the dissociative adsorption of C2H6 than they do for CH4. The MURT with an optimized parameter set provides for a predictive understanding of the kinetics of this C-H bond activation reaction, that is, it allows us to predict the dissociative sticking coefficient of C2H6 on Pt(111) for any combination of Ts and Tg even if the two are not equal to one another.

5.
J Phys Chem B ; 109(20): 10371-80, 2005 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-16852257

RESUMO

A 3-parameter local hot spot model of gas-surface reactivity is employed to analyze and predict dissociative sticking coefficients for CH(4) incident on Ir(111) under varied nonequilibrium and equilibrium conditions. One Ir surface oscillator and the molecular vibrations, rotations, and translational energy directed along the surface normal are treated as active degrees of freedom in the 14 dimensional microcanonical kinetics. The threshold energy for CH(4) dissociative chemisorption on Ir(111) derived from modeling molecular beam experiments is E(0) = 39 kJ/mol. Over more than 4 orders of magnitude of variation in sticking, the average relative discrepancy between the beam and theoretically derived sticking coefficients is 88%. The experimentally observed enhancement in dissociative sticking as beam translational energies decrease below approximately 10 kJ/mol is consistent with a parallel dynamical trapping/energy transfer channel that likely fails to completely thermalize the molecules to the surface temperature. This trapping-mediated sticking, indicative of specific energy transfer pathways from the surface under nonequilibrium conditions, should be a minor contributor to the overall dissociative sticking at thermal equilibrium. Surprisingly, the CH(4) dissociative sticking coefficient predicted for Ir(111) surfaces at thermal equilibrium, based on the molecular beam experiments, is roughly 4 orders of magnitude higher than recent measurements on supported nanoscale Ir catalysts at 1 bar pressure, which suggests that substantial improvements in catalyst turnover rates may be possible.

6.
J Phys Chem B ; 109(2): 685-8, 2005 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-16866427

RESUMO

A three-parameter local hot spot model of gas-surface reactivity is employed to analyze and predict dissociative sticking coefficients for SiH4 incident on Si(100) under varied nonequilibrium conditions. Two Si surface oscillators and the molecular vibrations, rotations, and translational energy directed along the local surface normal are active degrees of freedom in the 15 dimensional microcanonical kinetics. The threshold energy for SiH4 dissociative chemisorption is found to be 19 kJ/mol, in quantitative agreement with recent GGA-DFT calculations. A simple scheme for increasing the rate of chemical vapor deposition of silicon from SiH4 at low surface temperatures is modeled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...