Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 118(11): 5488-5538, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29812911

RESUMO

This review concentrates on the advances of atomistic molecular simulations to design and evaluate amorphous microporous polymeric materials for CO2 capture and separations. A description of atomistic molecular simulations is provided, including simulation techniques, structural generation approaches, relaxation and equilibration methodologies, and considerations needed for validation of simulated samples. The review provides general guidelines and a comprehensive update of the recent literature (since 2007) to promote the acceleration of the discovery and screening of amorphous microporous polymers for CO2 capture and separation processes.

2.
J Phys Chem B ; 119(9): 3837-45, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25666289

RESUMO

We present atomistic simulations of a single PNIPAM-alkyl copolymer surfactant in aqueous solution at temperatures below and above the LCST of PNIPAM. We compare properties of the surfactant with pure PNIPAM oligomers of similar lengths, such as the radius of gyration and solvent accessible surface area, to determine the differences in their structures and transition behavior. We also explore changes in polymer-polymer and polymer-water interactions, including hydrogen bond formation. The expected behavior is observed in the pure PNIPAM oligomers, where the backbone folds onto itself above the LCST in order to shield the hydrophobic groups from water. The surfactant, on the other hand, does not show much conformational change as a function of temperature, but instead folds to bring the hydrophobic alkyl tail and PNIPAM headgroup together at all temperatures. The atomic detail available from these simulations offers important insight into understanding how the transition behavior is changed in PNIPAM-based systems.


Assuntos
Resinas Acrílicas/química , Simulação de Dinâmica Molecular , Tensoativos/química , Água/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Temperatura
3.
J Chem Phys ; 143(24): 244901, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26723705

RESUMO

A coarse-grained (CG) model is developed for the thermoresponsive polymer poly(N-isopropylacrylamide) (PNIPAM), using a hybrid top-down and bottom-up approach. Nonbonded parameters are fit to experimental thermodynamic data following the procedures of the SDK (Shinoda, DeVane, and Klein) CG force field, with minor adjustments to provide better agreement with radial distribution functions from atomistic simulations. Bonded parameters are fit to probability distributions from atomistic simulations using multi-centered Gaussian-based potentials. The temperature-dependent potentials derived for the PNIPAM CG model in this work properly capture the coil-globule transition of PNIPAM single chains and yield a chain-length dependence consistent with atomistic simulations.

4.
J Chem Phys ; 141(20): 204902, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25429957

RESUMO

Block copolymers spontaneously self-assemble into nanostructured morphologies with industrially attractive properties; however, the relationships between polymer architecture and self-assembled morphology are difficult to tailor for copolymers with increased conformational restrictions. Using Dissipative Particle Dynamics, the self-assembled morphology of comb- and star-shaped diblock copolymers was simulated as a function of the number of arms, arm length, weight fraction, and A-B incompatibility. As the number of arms on the star, or grafting points for the comb, was increased from three to four to six, the ability to self-assemble into ordered morphologies was restricted. The molecular bridging between adjacent ordered domains was observed for both comb- and star-shaped copolymers, which was found to be enhanced with increasing number of arms. This study illustrates that comb- and star-shaped copolymers are viable alternatives for applications that would benefit from highly bridged nanostructural domains.

5.
J Phys Chem B ; 118(7): 1916-24, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24502582

RESUMO

Because of the complex connectivity of cross-linked polymers, generating structures for molecular simulations is a nontrivial task. In this work, a general methodology is presented for constructing post-cross-linked polymers by a new two-stage implementation of the Polymatic simulated polymerization algorithm, where linear polymers are first polymerized and then cross-linked. It is illustrated here for an example system of thermally cross-linked octene-styrene-divinylbenzene (OS-DVB) copolymers. In the molecular models, the degree of cross-linking is ranged from 0 to 100%, and the resulting structural and thermal properties are examined. The simulations reveal an increase in the free volume with higher cross-linking degrees. Shifts in the peaks of the structure factors, which are assigned to contributions from the backbone and side-chain atoms, correspond to the formation of larger free volume elements. Furthermore, the glass transition temperatures increase with higher degrees of cross-linking, while the thermal expansivity decreases. Comparisons with experimental results for similar systems are made when available. As demonstrated here, the presented methodology will provide an effective route to simulating post-cross-linked polymers for a variety of applications, which will enable an improved understanding of their structure-property relationships.

6.
J Phys Chem B ; 117(1): 355-64, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23265381

RESUMO

The design of a new class of materials, called organic molecules of intrinsic microporosity (OMIMs), incorporates awkward, concave shapes to prevent efficient packing of molecules, resulting in microporosity. This work presents predictive molecular simulations and experimental wide-angle X-ray scattering (WAXS) for a series of biphenyl-core OMIMs with varying end-group geometries. Development of the utilized simulation protocol was based on comparison of several simulation methods to WAXS patterns. In addition, examination of the simulated structures has facilitated the assignment of WAXS features to specific intra- and intermolecular distances, making this a useful tool for characterizing the packing behavior of this class of materials. Analysis of the simulations suggested that OMIMs had greater microporosity when the molecules were the most shape-persistent, which required rigid structures and bulky end groups. The simulation protocol presented here allows for predictive, presynthesis screening of OMIMs and similar complex molecules to enhance understanding of their structures and aid in future design efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...