Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 18: 987-1005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860210

RESUMO

Background: Schistosomiasis is a chronic debilitating parasitic disease accompanied with severe mortality rates. Although praziquantel (PZQ) acts as the sole drug for the management of this disease, it has many limitations that restrict the use of this treatment approach. Repurposing of spironolactone (SPL) and nanomedicine represents a promising approach to improve anti-schistosomal therapy. We have developed SPL-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to enhance the solubility, efficacy, and drug delivery and hence decrease the frequency of administration, which is of great clinical value. Methods: The physico-chemical assessment was performed starting with particle size analysis and confirmed using TEM, FT-IR, DSC, and XRD. The antischistosomal effect of the SPL-loaded PLGA NPs against Schistosoma mansoni (S. mansoni)-induced infection in mice was also estimated. Results: Our results manifested that the optimized prepared NPs had particle size of 238.00 ± 7.21 nm, and the zeta potential was -19.66 ± 0.98 nm, effective encapsulation 90.43±8.81%. Other physico-chemical features emphasized that nanoparticles were completely encapsulated inside the polymer matrix. The in vitro dissolution studies revealed that SPL-loaded PLGA NPs showed sustained biphasic release pattern and followed Korsmeyer-Peppas kinetics corresponding to Fickian diffusion (n<0.45). The used regimen was efficient against S. mansoni infection and induced significant reduction in spleen, liver indices, and total worm count (ρ<0.05). Besides, when targeting the adult stages, it induced decline in the hepatic egg load and the small intestinal egg load by 57.75% and 54.17%, respectively, when compared to the control group. SPL-loaded PLGA NPs caused extensive damage to adult worms on tegument and suckers, leading to the death of the parasites in less time, plus marked improvement in liver pathology. Conclusion: Collectively, these findings provided proof-of-evidence that the developed SPL-loaded PLGA NPs could be potentially used as a promising candidate for new antischistosomal drug development.


Assuntos
Nanopartículas , Esquistossomose mansoni , Animais , Camundongos , Espironolactona , Espectroscopia de Infravermelho com Transformada de Fourier , Fígado
2.
Drug Deliv ; 29(1): 906-924, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35297699

RESUMO

Nanoparticles for colon-drug delivery were designed and evaluated to solve many discrepancy issues such as high adverse effects of released drugs, insufficient drug amount at diseased areas, and unintentionally premature drug release to noninflamed GIT regions. Herein, the goal of this work was to convert trimebutine maleate (TMB) into nanostructured lipid carriers (NLC) in order to improve its protective effects in ulcerative colitis. NLC of TMB was prepared by the hot homogenization followed by ultra-sonication method. A full 42-factorial design was used to estimate the produced TMB-NLC. The study design included the exploration of the impact of two independent variables namely lipid mix amount and ratio (glyceryl mono stearate and capryol 90), surfactant concentration (0.5, 1, 1.5, and 2%), on the particle size, polydispersity index, and the entrapment efficiency (EE%). The protective activity of F9 was examined through macroscopical scores, histopathological changes, immunohistochemical localization of tumor necrosis factor-α (TNF-α) and examination of oxidative stress such as reduced glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) against acetic acid-induced colitis in rats. Consistent with our expectations, the orally administered optimized formula (F9) alleviated the severity of colitis in acetic acid-induced rat model of colitis likely owing to the controlled release compared to free TMB. We aimed to develop TMB-loaded NLC for the treatment of acute colitis with the goal of providing a superior drug safety profile over long-term remission and maintenance therapy.


Assuntos
Colite , Nanoestruturas , Trimebutina , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Portadores de Fármacos , Lipídeos , Ratos
3.
Drug Deliv ; 28(1): 1795-1809, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34470551

RESUMO

Nizatidine (NIZ), a histamine H2-receptor antagonist, is soluble and stable in the stomach, however, it exhibits a short half-life and a rapid clearance. Therefore, chitosan (CS) and polyethylene oxide (PEO) nanofibers (NFs) at different weight ratios were prepared by electrospinning and characterized. The selected uncrosslinked and glutaraldehyde-crosslinked NFs were investigated regarding floating, solid-state characteristics, in vitro release, and in vitro cytotoxicity. The cytoprotective activity against ethanol-induced gastric injury in rats was evaluated through macroscopical, histopathological, immunohistochemical, and oxidative stress examinations. NFs based on 8:2 CS:PEO exhibited the smallest diameter (119.17 ± 22.05 nm) and the greatest mucoadhesion (22.82 ± 3.21 g/cm2), so they were crosslinked with glutaraldehyde. Solid-state characterization indicated polymers interaction, a successful crosslinking, and NIZ dispersion in NFs. Crosslinking maintained swollen mats at pH 1.2 (swelling% = 29.47 ± 3.50% at 24 h), retarded their erosion at pH 6.8 (swelling%= 84.64 ± 4.91% vs. 25.40 ± 0.79% for the uncrosslinked NFs at 24 h), augmented the floating up to 24 h vs. 10 min for the uncrosslinked NFs at pH 1.2 and prolonged the drug release (%drug released ≥ 93% at 24 h vs. 4 and 5 h for the uncrosslinked NFs at pHs 1.2 and 6.8, respectively). The viability of Caco-2 cells ≥ 86.87 ± 6.86% revealed NFs biocompatibility and unreacted glutaraldehyde removal. Crosslinking of 8:2 CS:PEO NFs potentiated the antiulcer activity (38.98 vs. 8.67 for the uncrosslinked NFs) as well as it preserved the gastric wall architecture, COX-2 expression, and oxidative stress markers levels of the normal rats.


Assuntos
Antiulcerosos/farmacologia , Quitosana/química , Glutaral/química , Nanofibras/química , Nizatidina/farmacologia , Polietilenoglicóis/química , Animais , Antiulcerosos/administração & dosagem , Antiulcerosos/farmacocinética , Células CACO-2 , Sobrevivência Celular , Química Farmacêutica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Nizatidina/administração & dosagem , Nizatidina/farmacocinética , Distribuição Aleatória , Ratos
4.
Int J Nanomedicine ; 14: 7191-7213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564873

RESUMO

BACKGROUND: Diosmin showed poor water solubility and low bioavailability. Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles were successfully used to improve the drugs solubility and bioavailability. Coating of PLGA nanoparticles with chitosan can ameliorate their gastric retention and cellular uptake. METHODOLOGY: PLGA nanoparticles of diosmin were prepared using different drug and polymer amounts. Nanoparticles were selected based on entrapment efficiency% (EE%) and particle size measurements to be coated with chitosan. The selected nanoparticles either uncoated or coated were evaluated regarding morphology, ζ-potential, solid-state characterization, in vitro release, storage stability, and mucoadhesion. The anti-ulcer activity (AA) against ethanol-induced ulcer in rats was assessed through macroscopical evaluation, histopathological examination, immunohistochemical localization of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transmission electron microscopic examination of gastric tissues compared to free diosmin (100 mg/kg) and positive control. RESULTS: Based on EE% and particle size measurements, the selected nanoparticles, either uncoated or coated with 0.1% w/v chitosan, were based on 1:15 drug-PLGA weight ratio and 20 mg diosmin employing methylene chloride as an organic phase. Examination by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed nanoscopic spherical particles. Drug encapsulation within the selected nanoparticles was suggested by Fourier transform-infrared, differential scanning calorimetry (DSC) and X-ray diffractometry results. Chitosan-coated nanoparticles were more stable against size enlargement probably due to the higher ζ-potential. Only coated nanoparticles showed gastric retention as revealed by SEM examination of stomach and duodenum. The superior AA of coated nanoparticles was confirmed by significant reduction in average mucosal damage, the majority of histopathological changes and NF-κB expression in gastric tissue when compared to positive control, diosmin and uncoated nanoparticles as well as insignificant difference relative to normal control. Coated nanoparticles preserved the normal ultrastructure of the gastric mucosa as revealed by TEM examination. CONCLUSION: The optimized chitosan-coated PLGA nanoparticles can be represented as a potential oral drug delivery system of diosmin.


Assuntos
Antiulcerosos/uso terapêutico , Quitosana/química , Diosmina/uso terapêutico , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Estômago/patologia , Úlcera/tratamento farmacológico , Adesividade , Animais , Antiulcerosos/farmacologia , Varredura Diferencial de Calorimetria , Diosmina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Duodeno/efeitos dos fármacos , Duodeno/patologia , Duodeno/ultraestrutura , Mucosa Gástrica/patologia , Mucosa Gástrica/ultraestrutura , Cinética , Masculino , Muco/química , NF-kappa B/metabolismo , Nanopartículas/ultraestrutura , Tamanho da Partícula , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Estômago/efeitos dos fármacos , Estômago/ultraestrutura , Úlcera/patologia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...