Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770521

RESUMO

In addition to environmental concerns, the presence of microorganisms in plastic food packaging can be hazardous to human health. In this work, cinnamon nanoparticles incorporated with red seaweed (Kappaphycus alvarezii) biopolymer films were fabricated using a solvent casting method. Cinnamon was used as a filler to enhance the properties of the films at different concentrations (1, 3, 5, and 7% w/w) by incorporating it into the matrix network. The physico-chemical, thermal, mechanical, and antimicrobial properties of the cinnamon biopolymer films were obtained using dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transmission infrared spectroscopy (FT-IR), water contact angle (WCA) measurement, thermogravimetric analysis (TGA), mechanical testing, and antimicrobial testing, respectively. The results showed that the addition of cinnamon nanoparticles to the film improved the morphological, mechanical, thermal, wettability, and antibacterial properties of the nanocomposite films. The cinnamon particles were successfully reduced to nano-sized particles with an average diameter between 1 nm and 100 nm. The hydrophobicity of the film increased as the concentration of cinnamon nanoparticles incorporated into the seaweed matrix increased. The tensile and thermal properties of the cinnamon seaweed biopolymer film were significantly improved with the presence of cinnamon nanoparticles. The biopolymer films exhibited good inhibitory activity at 7% cinnamon nanoparticles against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Salmonella bacteria with inhibition zone diameters of 11.39, 10.27, and 12.46 mm, indicating the effective antimicrobial activity of the biopolymer film. The functional properties of the fabricated biopolymer film were enhanced with the addition of cinnamon nanoparticles.

2.
Molecules ; 27(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36144760

RESUMO

Patchouli extracts and oils extracted from Pogostemon cablin are essential raw material for the perfume and cosmetics industries, in addition to being used as a natural additive for food flavoring. Steam distillation is a standard method used for plant extraction. However, this method causes thermal degradation of some essential components of the oil. In this study, patchouli was extracted with supercritical carbon dioxide (SC-CO2) under different conditions of pressure (10-30 MPa) and temperature (40-80 °C). The chemical components of the crude extracted oil and the functional group were characterized using gas chromatography-mass spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FT-IR). The extraction with supercritical carbon dioxide was shown to provide a higher yield (12.41%) at a pressure of 20 MPa and a temperature of 80 °C. Patchouli alcohol, Azulene, δ-Guaiene, and Seychellene are the main bioactive compounds that GC-MS results have identified. FTIR spectra showed alcohol, aldehyde, and aromatic ring bond stretching peaks. Extraction of patchouli with supercritical carbon dioxide provided a higher yield and a better quality of the crude patchouli oil.


Assuntos
Cromatografia com Fluido Supercrítico , Óleos Voláteis , Perfumes , Pogostemon , Aldeídos , Azulenos , Dióxido de Carbono , Cromatografia com Fluido Supercrítico/métodos , Óleos Voláteis/química , Extratos Vegetais , Óleos de Plantas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...