Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Trop Biomed ; 38(1): 187-204, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33797545

RESUMO

Malaria infection still remains as one of the most prominent parasitic diseases afflicting mankind in tropical and subtropical regions. The severity of malaria infection has often been associated to exuberant host immune inflammatory responses that could possibly lead to severe immunopathological conditions and subsequent death of host tissues. Activin A is a protein belonging to the transforming growth factor-beta (TGF-ß) family that regulates multiple physiological processes and pathological-associated diseases. The biological roles of activin A have been associated with manipulation of inflammation-related processes and modulation of host immune responses. This implies that activin A protein could play a role in malaria pathogenesis since malaria infection has been closely linked to severe immune responses leading to death, However, the actual in vivo role of activin A in malaria infection remains elusive. Hence, this study was undertaken to investigate the involvement of activin A in malaria infection as well as to assess the modulating effects of activin A on the cytokine releases (TNF-α, IFN-γ and IL-10) and histopathological changes in major affected organs (kidney, liver, lung, brain and spleen) in malarial mice infected with Plasmodium berghei ANKA. Our results showed that the concentrations of plasma activin A were significantly increased in malarial mice throughout the study periods. Also. the systemic activin A level was positively correlated with malaria parasitemia. This indicates that activin A could play a role in malaria pathogenesis and malaria parasitemia development. Plasma TNF-α, IFN-γ and IL-10 cytokine levels were significantly increased in malarial mice at day-5 post infection, suggesting that these cytokines attributed to severe malaria pathogenesis. Histopathological features such as sequestration of parasitized red blood cells (pRBCs) and hemozoin formation were amongst the most common pathological conditions observed in tissues of major affected organs (kidney, liver, lung, brain and spleen) in malarial mice. Neutralization of activin A production via recombinant mouse activin RIIA Fc chimera (rmActivin RIIA Fc chimera) had significantly reduced the parasitemia levels in malarial mice. The release of TNF-α cytokine was significantly reduced as well as the sequestration of parasitized pRBCs and hemozoin formation in major affected organs in malarial mice were also alleviated following inhibition of activin A production. Overall, this preliminary study suggests that activin A could play an immune modulation role in malaria pathogenesis through modulation of TNF-α release that benefits host from severe pathological destructions provoked by intensified inflammatory responses. Further studies are warranted to elucidate the precise mechanism of immune modulation mediated by activin A and its associated immune-modulation mediators in regulating the inflammatory responses elicited during the course of malaria infection.


Assuntos
Ativinas/antagonistas & inibidores , Malária/tratamento farmacológico , Fator de Necrose Tumoral alfa/sangue , Ativinas/imunologia , Animais , Citocinas/sangue , Interferon gama/sangue , Interleucina-10/sangue , Malária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Plasmodium berghei
2.
Tropical Biomedicine ; : 187-204, 2021.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-886635

RESUMO

@#Malaria infection still remains as one of the most prominent parasitic diseases afflicting mankind in tropical and subtropical regions. The severity of malaria infection has often been associated to exuberant host immune inflammatory responses that could possibly lead to severe immunopathological conditions and subsequent death of host tissues. Activin A is a protein belonging to the transforming growth factor-beta (TGF-β) family that regulates multiple physiological processes and pathological-associated diseases. The biological roles of activin A have been associated with manipulation of inflammation-related processes and modulation of host immune responses. This implies that activin A protein could play a role in malaria pathogenesis since malaria infection has been closely linked to severe immune responses leading to death, However, the actual in vivo role of activin A in malaria infection remains elusive. Hence, this study was undertaken to investigate the involvement of activin A in malaria infection as well as to assess the modulating effects of activin A on the cytokine releases (TNF-α, IFN-γ and IL-10) and histopathological changes in major affected organs (kidney, liver, lung, brain and spleen) in malarial mice infected with Plasmodium berghei ANKA. Our results showed that the concentrations of plasma activin A were significantly increased in malarial mice throughout the study periods. Also. the systemic activin A level was positively correlated with malaria parasitemia. This indicates that activin A could play a role in malaria pathogenesis and malaria parasitemia development. Plasma TNF-α, IFN-γ and IL-10 cytokine levels were significantly increased in malarial mice at day-5 post infection, suggesting that these cytokines attributed to severe malaria pathogenesis. Histopathological features such as sequestration of parasitized red blood cells (pRBCs) and hemozoin formation were amongst the most common pathological conditions observed in tissues of major affected organs (kidney, liver, lung, brain and spleen) in malarial mice. Neutralization of activin A production via recombinant mouse activin RIIA Fc chimera (rmActivin RIIA Fc chimera) had significantly reduced the parasitemia levels in malarial mice. The release of TNF-α cytokine was significantly reduced as well as the sequestration of parasitized pRBCs and hemozoin formation in major affected organs in malarial mice were also alleviated following inhibition of activin A production. Overall, this preliminary study suggests that activin A could play an immune modulation role in malaria pathogenesis through modulation of TNF-α release that benefits host from severe pathological destructions provoked by intensified inflammatory responses. Further studies are warranted to elucidate the precise mechanism of immune modulation mediated by activin A and its associated immune-modulation mediators in regulating the inflammatory responses elicited during the course of malaria infection.

3.
Trop Biomed ; 37(1): 29-49, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33612716

RESUMO

Treatment Failure with chloroquine is one of the challenges that faced the dedicated efforts to eradicate malaria This study aims at investigating the impact of treatment failure with chloroquine on the progression of the disease-induced histo-pathogenic and immunogenic outcomes. To achieve this, Rane's protocol with modifications was applied on a model of Plasmodium berghei ANKA infected ICR mice to determine the dose response curve of chloroquine and to screen the treatment impact on the disease progression. Chloroquine was given at 1, 5, 10, 15 and 20 mg/kg once the parasitemia reached to 20-30% (the experimental initiation point). During the subsequent days, the mice were monitored for changes in the clinical signs, hematology parameters and the progress of the parasitemia until the parasitemia reached to 60-70% (the experimental termination point) or up to 10 days after chloroquine administration in case of achieving a complete eradication of the parasite. At the end, the mice were exsanguinated and their blood and organs were collected for the biochemistry and the histology study. A complete eradication of the parasite was achieved at 20 mg/kg while recrudescence was observed at the lower doses. At 1 mg/kg, the parasite growth was comparable to that of the positive control. The histo-pathogenic and immunogenic changes were stronger in the groups that experienced recrudescence (at 5 and 10 mg/kg). All in all, the study highlights the possibility of having a worsened clinical condition when chloroquine is given at its sub-therapeutic doses during malaria treatment.


Assuntos
Antimaláricos/administração & dosagem , Cloroquina/administração & dosagem , Malária/tratamento farmacológico , Animais , Antimaláricos/uso terapêutico , Cloroquina/uso terapêutico , Progressão da Doença , Camundongos Endogâmicos ICR , Parasitemia/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Falha de Tratamento
4.
Tropical Biomedicine ; : 29-49, 2020.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-823037

RESUMO

@#Treatment Failure with chloroquine is one of the challenges that faced the dedicated efforts to eradicate malaria This study aims at investigating the impact of treatment failure with chloroquine on the progression of the disease-induced histo-pathogenic and immunogenic outcomes. To achieve this, Rane’s protocol with modifications was applied on a model of Plasmodium berghei ANKA infected ICR mice to determine the dose response curve of chloroquine and to screen the treatment impact on the disease progression. Chloroquine was given at 1, 5, 10, 15 and 20 mg/kg once the parasitemia reached to 20-30% (the experimental initiation point). During the subsequent days, the mice were monitored for changes in the clinical signs, hematology parameters and the progress of the parasitemia until the parasitemia reached to 60-70% (the experimental termination point) or up to 10 days after chloroquine administration in case of achieving a complete eradication of the parasite. At the end, the mice were exsanguinated and their blood and organs were collected for the biochemistry and the histology study. A complete eradication of the parasite was achieved at 20 mg/kg while recrudescence was observed at the lower doses. At 1 mg/kg, the parasite growth was comparable to that of the positive control. The histo-pathogenic and immunogenic changes were stronger in the groups that experienced recrudescence (at 5 and 10 mg/kg). All in all, the study highlights the possibility of having a worsened clinical condition when chloroquine is given at its sub-therapeutic doses during malaria treatment.

5.
Trop Biomed ; 33(1): 14-26, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33579137

RESUMO

Emergence of chloroquine (CQ) resistance among different strains of Plasmodium falciparum is the worst incident that has ever faced the dedicated efforts to eradicate malaria. The main cause of CQ resistance is over-activity of the pumping mechanism that ousts CQ outside the DV. This urged the scientists to look for other alternatives or adjuvants that augment its action. CQ The study aimed to test the potential of five coumarin derivatives, namely; umbeliferon, esculetin, scopoletine, herniarin and 3-aminocoumarine to inhibit plasmodium growth and reverse CQ resistance in Plasmodium falciparum K1 and 3D7. They are highly ubiquitous in nature and are famous by their diverse pharmacological effects. SYBRE green-1 based drug sensitivity assay was used to screen the effect of CQ and each coumarin on the parasite growth and isobologram technique was to assess the interaction of the coumarins with CQ. Effect of each coumarin on both RBCs and Vero cells stability as well as on RBCs fragility were screened to exclude any toxic impact on normal cells. On the other hand, their effect on hemozoin formation was screened to investigate about their molecular mechanism. For molecular characterization, Their antioxidant properties were determined using the conventional in vitro tests and their characters were obtained from Molinspiration Simulation Software. Results showed that all of them were safe to human cells, have weak to moderate plasmodial growth inhibitory effect and only umbeliferon, 3- aminocoumarin and esculetin has interacted effectively with CQ. These actions are neither correlated with hemozoin formation inhibition nor to the antioxidant mechanisms. Further studies recommended to investigate the mechanism of their action. Overall, all the tested coumarins are not ideal to be used in the conventional malaria therapy and only umbeliferon, 3-aminocoumarin and esculetin can be suggested to potentiate CQ action.

6.
Asian Pac J Trop Med ; 8(7): 507-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26276279

RESUMO

OBJECTIVE: To explore whether its antiplasmodium effect of andrographolide is attributed to its plausible effect on the plasma membrane of both Plasmodium falciparum infected and non-infected RBCs. METHODS: Anti-plasmodium effect of andrographolide against Plasmodium falciparum strains was screened using the conventional malaria drug sensitivity assay. The drug was incubated with uninfected RBCs to monitor its effect on their morphology, integrity and osmotic fragility. It was incubated with the plasmodium infected RBCs to monitor its effect on the parasite induced permeation pathways. Its effect on the potential of merozoites to invade new RBCs was tested using merozoite invasion assay. RESULTS: It showed that at andrographolide was innocuous to RBCs at concentrations approach its therapeutic level against plasmodia. Nevertheless, this inertness was dwindled at higher concentrations. CONCLUSIONS: In spite of its success to inhibit plasmodium induced permeation pathway and the potential of merozoites to invade new RBCs, its anti-plasmodium effect can't be attributed to these functions as they were attained at concentrations higher than what is required to eradicate the parasite. Consequently, other mechanisms may be associated with its claimed actions.

7.
Malar Res Treat ; 2014: 950424, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506039

RESUMO

Emergence of drugs resistant strains of Plasmodium falciparum has augmented the scourge of malaria in endemic areas. Antimalaria drugs act on different intracellular targets. The majority of them interfere with digestive vacuoles (DVs) while others affect other organelles, namely, apicoplast and mitochondria. Prevention of drug accumulation or access into the target site is one of the mechanisms that plasmodium adopts to develop resistance. Plasmodia are endowed with series of transporters that shuffle drugs away from the target site, namely, pfmdr (Plasmodium falciparum multidrug resistance transporter) and pfcrt (Plasmodium falciparum chloroquine resistance transporter) which exist in DV membrane and are considered as putative markers of CQ resistance. They are homologues to human P-glycoproteins (P-gh or multidrug resistance system) and members of drug metabolite transporter (DMT) family, respectively. The former mediates drifting of xenobiotics towards the DV while the latter chucks them outside. Resistance to drugs whose target site of action is intravacuolar develops when the transporters expel them outside the DVs and vice versa for those whose target is extravacuolar. In this review, we are going to summarize the possible pfcrt and pfmdr mutation and their role in changing plasmodium sensitivity to different anti-Plasmodium drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...