Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37513869

RESUMO

This study shed light for the first time on the in vivo diabetic wound healing potential activity of natural marine soft coral polymeric nanoparticle in situ gel using an excision wound model. A Nephthea sp. methanol-methylene chloride extract loaded with pectin nanoparticles (LPNs) was created. For the preparation of in situ gel, ion-gelation techniques, the entrapment efficiency, the particle size, the polydispersity index, the zeta potential, the in-vitro drug release, and a transmission electron microscope were used and the best formula was selected. Using (UPLC-Q/TOF-MS), 27 secondary metabolites responsible for extract biological activity were identified. Isolation and identification of arachidic acid, oleic acid, nervonic acid, and bis-(2-ethylhexyl)-phthalate (DEHP) of Nephthea sp. was firstly reported here using NMR and mass spectral analyses. Moreover, LPN in situ gel has the best effects on regulating the proinflammatory cytokines (NF-κB, TNF-α, IL-6, and IL-1ß) that were detected on days 7 and 15. The results were confirmed with an in vitro enzymatic inhibitory effect of the extract against glycogen synthase kinase (GSK-3) and matrix metalloproteinase-1 (MMP-1), with IC50 values of 0.178 ± 0.009 and 0.258 ± 0.011 µg/mL, respectively. The molecular docking study showed a free binding energy of -9.6 kcal/mol for chabrolosteroid E, with the highest binding affinity for the enzyme (GSK-3), while isogosterone B had -7.8 kcal/mol for the enzyme (MMP-1). A pharmacokinetics study for chabrolohydroxybenzoquinone F and isogosterone B was performed, and it predicted the mode of action of wound healing activity.

2.
Int J Pharm X ; 6: 100194, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37434966

RESUMO

Duloxetine hydrochloride (DUL) is a BCS class-II antidepressant drug, acting via serotonin and norepinephrine reuptake inhibition. Despite high oral absorption, DUL suffers limited bioavailability due to extensive gastric and first-pass metabolism. To improve DUL's bioavailability; DUL-loaded elastosomes were developed, via full factorial design, utilizing various span®60: cholesterol ratios, edge activator types and amounts. Entrapment efficiency (E.E.%), particle size (PS), zeta potential (ZP) and in-vitro released percentages after 0.5 h (Q0.5h) and 8 h (Q8h) were evaluated. Optimum elastosomes (DUL-E1) were assessed for morphology, deformability index, drug crystallinity and stability. DUL pharmacokinetics were evaluated in rats following intranasal and transdermal application of DUL-E1 elastosomal gel. DUL-E1 elastosomes [comprising span®60 and cholesterol (1:1) and brij S2 (edge activator; 5 mg)] were optimum with high E.E.% (81.5 ± 3.2%), small PS (432 ± 13.2 nm), ZP (-30.8 ± 3.3 mV), acceptable Q0.5h (15.6 ± 0.9%), and high Q8h (79.3 ± 3.8%). Intranasal and transdermal DUL-E1 elastosomes revealed significantly higher Cmax (251 ± 18.6 and 248 ± 15.9 ng/mL) at Tmax (2 and 4 h) and improved relative bioavailability (≈ 2.8 and 3.1 folds) respectively, in comparison to oral DUL aqueous solution. In-vivo histopathological studies were conducted to ensure the safety of DUL-E1. Elastosomes are promising novel nano-carriers, capable of enhancing the bioavailability of DUL via various routes of administration.

3.
Drug Deliv ; 23(9): 3374-3386, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27128792

RESUMO

Migraine attack is a troublesome physiological condition associated with throbbing, intense headache, in one half of the head. Zolmitriptan is a potent second-generation triptan, prescribed for patients with migraine attacks, with or without an aura, and cluster headaches. The absolute bioavailability of zolmitriptan is about 40% for oral administration; due to hepatic first metabolism. Nasal administration would circumvent the pre-systemic metabolism thus increasing the bioavailability of zolmitriptan. In addition, due to the presence of microvilli and high vasculature, the absorption is expected to be faster compared to oral route. However, the bioavailability of nasal administered drugs is particularly restricted by poor membrane penetration. Thus, the aim of this work is to explore the potential of novel nanovesicular fatty acid enriched structures (novasomes) for effective and enhanced nasal delivery of zolmitriptan and investigate their nose to brain targeting potential. Novasomes were prepared using nonionic surfactant, cholesterol in addition to a free fatty acid. A 23 full factorial design was adopted to study the influence of the type of surfactant, type of free fatty acid and ratio between the free fatty acid and the surfactant on novasomes properties. The particle size, entrapment efficiency, polydispersity index, zeta potential and % zolmitriptan released after 2 h were selected as dependent variables. Novasomes were further optimized using Design Expert® software (version 7; Stat-Ease Inc., Minneapolis, MN), and an optimized formulation composed of Span® 80:Cholesterol:stearic acid (in the ratio 1:1:1) was selected. This formulation showed zolmitriptan entrapment of 92.94%, particle size of 149.9 nm, zeta potential of -55.57 mV, and released 48.43% zolmitriptan after 2 h. The optimized formulation was further examined using transmission electron microscope, which revealed non-aggregating multi-lamellar nanovesicles with narrow size distribution. DSC, XRD examination of the optimized formulation confirmed that the drug have been homogeneously dispersed throughout the novasomes in an amorphous state. In-vivo bio-distribution studies of 99mTc radio-labeled intranasal zolmitriptan loaded novasomes were done on mice, the pharmacokinetic parameters were compared with those following administration of intravenous 99mTc-zolmitriptan solution. Results revealed the great enhancement in zolmitriptan targeting to the brain, with drug targeting potential of about 99% following intranasal administration of novasomes compared with the intravenous drug solution. Zolmitriptan loaded novasomes administered via the nasal route may therefore constitute an advance in the management of acute migraine attacks.


Assuntos
Encéfalo/efeitos dos fármacos , Mucosa Nasal/metabolismo , Oxazolidinonas/administração & dosagem , Triptaminas/administração & dosagem , Administração Intranasal/métodos , Administração Oral , Animais , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Masculino , Camundongos , Transtornos de Enxaqueca/tratamento farmacológico , Oxazolidinonas/química , Tamanho da Partícula , Tensoativos/química , Triptaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...