Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36429647

RESUMO

Groundwater is an essential freshwater source because traditional sources of freshwater, such as rainfall and rivers, are unable to provide all residential, industrial, and agricultural demands. Groundwater is replenished by different sources: rivers, canals, drains, and precipitation. This research aims to apply numerical models for a real case study (Bahr El Baqar drain) in the Eastern Nile aquifer to monitor groundwater quality due to the use of wastewater from drains directly in irrigation due to the shortage of freshwater in this area. In addition, the effect of over-pumping from the aquifer is studied to show the extent of contaminants in groundwater. Moreover, a management strategy was achieved through mixing treated wastewater with freshwater to reduce the contamination of groundwater and overcome water shortage. Visual MODFLOW is used to simulate groundwater flow and contaminant transport into the Eastern Nile aquifer (ENDA), Egypt. In this study, three stages including 15 scenarios (five scenarios for each stage) were settled to achieve the study objectives. The first stage was carried out to investigate the impact of using untreated wastewater for irrigation due to the shortage of freshwater in this area. The results of this stage showed that increasing the use of untreated wastewater increased the contamination of the aquifer. The average COD concentrations in the five scenarios reached 23.73, 33.76, 36.49, 45.13, and 53.15 mg/L. The second stage was developed to evaluate the impact of over-pumping and using untreated wastewater for irrigation due population increase and a reduction of freshwater in the Nile Delta. The results revealed that over-pumping has increased the contamination of the aquifer and the average COD concentrations increased to 25.3, 33.34, 40.66, 48.6, and 54.17 mg/L. The third stage was applied to investigate the impact of mixing treated wastewater with freshwater for irrigation to support the freshwater quantity. The results of this stage led to enhanced water quality in the aquifer and the average COD concentrations decreased to 20.26, 23.13, 26.03, 30, and 32.83 mg/L. The results showed that mixing freshwater with treated wastewater has a good influence on water quality, can be safely used in irrigation and reduces the effects on farmers' health and life.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Águas Residuárias/análise , Egito , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Rios
2.
Artigo em Inglês | MEDLINE | ID: mdl-34299934

RESUMO

This study aims to investigate the impact of using untreated wastewater in irrigation. Different scenarios of management were applied by mixing it with treated wastewater or freshwater on groundwater quality. A hypothetical case study is presented. The numerical model of MODFLOW is used in the simulation by applying four stages (21 scenarios) including: different values of pumping rates, changing wastewater recharge rates, and a combination of the previous scenarios. Additionally, protection scenario for groundwater was applied by using different values of mixing of freshwater with wastewater. The simulation was carried out for the contamination of Chemical Oxygen Demand COD and the concentration reached 48.6 ppm at a depth of 25 m and 19.41 ppm at a depth of 50 m in the base case. The results showed a negative impact on groundwater quality had occurred due to increasing the pumping rates, wastewater recharge rates, and combination between two scenarios, which led to an increase of the contaminants in the aquifers. However, positive protection effects occurred due to mixing the wastewater with treated wastewater. The results of COD concentration in groundwater using treated wastewater reached 81.82, 77.88, 74.03, 70.12, and 66.15 ppm at a depth of 25 m and 53.53, 50.95, 48.43, 45.87, and 43.28 ppm at a depth of 50 m, at concentrations of 93, 88.52, 84.14, 79.7, and 75.19 ppm with constant pumping and recharge rates of 4320 m3/d and 547.5 mm/year, respectively. The using of treated wastewater could improve the groundwater quality to be used in the irrigation process and help to minimize groundwater contamination. Moreover, the abstraction of the groundwater should be optimized, and the qualities of wastewater should be constrained in agriculture to protect the groundwater quality.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Agricultura , Clima Desértico , Monitoramento Ambiental , Águas Residuárias/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...