Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 199: 114279, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588829

RESUMO

Our study aimed to develop a virucidal throat spray using bioactive compounds and excipients, focusing on the preparation of Curcumin (CUR) in a self-nano emulsifying drug delivery system (SNEDDS). Two molecular docking studies against SARS-CoV-2 targets guided the selection of proper oil, surfactant, co-surfactant, and natural bioactive that would maximize the antiviral activity of the throat spray. Two self-nanoemulsifying formulas that were diluted with different vehicles to prepare eight CUR-loaded SNESNS (self-nanoemulsifying self-nanosuspension) formulas. In vitro characterization studies and in vitro anti-SARS-CoV-2 effect revealed that the optimal formula, consisted of 20 % Anise oil, 70 % Tween 80, 10 % PEG 400, and 0.1 %w/w CUR, diluted with DEAE-Dx. Preclinical toxicity tests on male rats confirmed the safety of a mild throat spray dose (5 µg/mL CUR). In a rat model of acute pharyngitis induced by ammonia, post-treatment with the optimal formula of CUR loaded SNESNS for one week significantly reduced elevated proinflammatory markers (TNF-α, IL6, MCP1, and IL8). In conclusion, our CUR-loaded SNESNS formula, at 5 µg/mL concentration, shows promising effect as a prophylactic throat spray against SARS-CoV-2 and as a treatment for pharyngitis.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Excipientes , Faringite , SARS-CoV-2 , Animais , Faringite/tratamento farmacológico , Excipientes/química , Ratos , Masculino , Antivirais/administração & dosagem , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2/efeitos dos fármacos , COVID-19/prevenção & controle , Curcumina/administração & dosagem , Curcumina/farmacologia , Humanos , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Sistemas de Liberação de Fármacos por Nanopartículas/química , Chlorocebus aethiops
2.
J Pharm Investig ; 51(6): 735-757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513113

RESUMO

Purpose: A novel coronavirus (COVID-19) that has not been previously identified in humans and has no specific treatment has recently spread. Treatment trials using antiviral and immune-modulating drugs such as hydroxychloroquine (HCQ) were used to control this viral outbreak however several side effects have emerged. Berberine (BER) is an alkaloid that has been reported to reveal some pharmacological properties including antioxidant and antimicrobial activities. Additionally, Zinc oxide nanoparticles (ZnO-NPs) possess potent antioxidant and anti-inflammatory properties. Therefore, this study was undertaken to estimate the efficiency of both BER and synthetic ZnO/BER complex as an anti-COVID-19 therapy. Methods: First, the ZnO/BER complex was prepared by the facile mixing method. Then in vitro studies on the two compounds were conducted including VeroE6 toxicity, anti-COVID-19 activity, determination of inhibitory activity towards papain-like proteinase (PL pro) and spike protein- and receptor- binding domain (RBD) as well as assessment of drug toxicity on RBCs. Results: The results showed that ZnO/BER complex acts as an anti-COVID-19 by inhibiting spike protein binding with angiotensin-converting enzyme II (ACE II), PL pro activity, spike protein and E protein levels, and expression of both E-gene and RNA dependent RNA polymerase (RdRp) at a concentration lower than that of BER or ZnO-NPs alone. Furthermore, ZnO/BER complex had antioxidant and antimicrobial properties where it prevents the auto oxidation of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and the culture of lower respiratory system bacteria that affected Covid 19 patients. The ZnO/BER complex prevented as well the HCQ cytotoxic effect on both RBC and WBC (in vitro) and hepatotoxicity, nephrotoxicity and anemia that occurred after HCQ long administration in vivo. Conclusion: The ZnO/BER complex can be accounted as promising anti-COVID 19 candidate because it inhibited the virus entry, replication, and assembly. Furthermore, it could be used to treat a second bacterial infection that took place in hospitalized COVID 19 patients. Moreover, ZnO/BER complex was found to eliminate the toxicity of long-term administration of HCQ in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...