Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Hazard Mater ; 363: 258-267, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30308365

RESUMO

The Gabes Gulf had received huge quantities of phosphogypsum discharged from fertilizer plants. Dumping phosphogypsum in coastal waters leads to the formation of foam layers which can float on the surface and be passively transported to distant areas. This is the first attempt at geochemical and mineralogical characterization of these industrial foams in order to understand their role in the dynamic and behavior of contaminants in marine environment. Chemically, phosphogypsum foams (PGFs) are heavily loaded with radiochemical contaminants. Their mineralogical composition showed a prevalence of synthetic gypsum followed by other secondary minerals including halite, quartz, dolomite, sphalerite-Cd and fluorapatite. PGFs are rich in organic matter (OM), precursor of their formation. Once released in gypseous water, the OM in solution undergoes agglomeration, cementing and flotation steps leading to the formation of floating foams. The foams' OM was found to control the mobility of industrial contaminants contributing then to the marine environment pollution. Consequently, PGFs are the main accumulating, transporting and dispersion agent of phosphogypsum radiochemical contaminants. Thus, PGFs removal has the potential to reduce enormously the dynamics of contaminants transferred from the fertilizer plants to the aquatic environment, reducing thus their impacts on the marine environment and health status in Gabes.

2.
Environ Sci Pollut Res Int ; 25(15): 14690-14702, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29532384

RESUMO

Since the establishment of the coastal industrial complex in Gabes city (Gulf of Gabes, SE Tunisia), hundred million tons of untreated phosphogypsum have been discharged in the open sea causing serious environmental problems. To better understand the dynamic and behavior of phosphate/phosphogypsum contaminants from raw ores to marine environment, a chemical, organic, mineralogical, and morphological characterization of phosphate rock and phosphogypsum was conducted using several sophisticated techniques. The chemical analysis showed that phosphate and phosphogypsum contain high loads of trace elements and that the transfer factors of pollutants varied from 5.83% (U) to 140% (Hg). Estimated annual flows of phosphogypsum contaminants into the marine environment ranged between 0.05 (Re) and 87,249.60 (F) tons. The phosphate rock was found to be formed by carbonate fluorapatite, calcite, dolomite, natural gypsum, quartz, calcite-Mg, apatite, pyrite, fluorite, and sphalerite-Cd and phosphogypsum by synthetic gypsum and sphalerite-Cd. The phosphate was found to be richer in organic compounds compared to phosphogypsum. Based on this work, the Tunisian phosphogypsum has a high mining potential and encourages the development of an economically beneficial and environmentally friendly phosphogypsum-treating industry.


Assuntos
Carbonato de Cálcio/análise , Sulfato de Cálcio/análise , Fertilizantes/análise , Fosfatos/análise , Ácidos Fosfóricos/química , Fósforo/análise , Carbonato de Cálcio/química , Sulfato de Cálcio/química , Cidades , Conservação dos Recursos Naturais , Poluentes Ambientais , Magnésio , Fosfatos/química , Fósforo/química , Tunísia
3.
Acta Crystallogr E Crystallogr Commun ; 72(Pt 8): 1150-2, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27536401

RESUMO

In the title compound, C17H28N2O3, the isoxazolidine ring adopts an envelope conformation with the O atom deviating from the mean plane of the other four ring atoms by 0.617 (1) Å. In the crystal, mol-ecules are linked via weak C-H⋯O hydrogen bonds, forming chains which extend along the b-axis direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...