Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1293883, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455057

RESUMO

Fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF) and systemic scleroderma (SSc), are commonly associated with high morbidity and mortality, thereby representing a significant unmet medical need. Interleukin 11 (IL11)-mediated cell activation has been identified as a central mechanism for promoting fibrosis downstream of TGFß. IL11 signaling has recently been reported to promote fibroblast-to-myofibroblast transition, thus leading to various pro-fibrotic phenotypic changes. We confirmed increased mRNA expression of IL11 and IL11Rα in fibrotic diseases by OMICs approaches and in situ hybridization. However, the vital role of IL11 as a driver for fibrosis was not recapitulated. While induction of IL11 secretion was observed downstream of TGFß signaling in human lung fibroblasts and epithelial cells, the cellular responses induced by IL11 was quantitatively and qualitatively inferior to that of TGFß at the transcriptional and translational levels. IL11 blocking antibodies inhibited IL11Rα-proximal STAT3 activation but failed to block TGFß-induced profibrotic signals. In summary, our results challenge the concept of IL11 blockade as a strategy for providing transformative treatment for fibrosis.


Assuntos
Interleucina-11 , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Fibrose , Miofibroblastos/metabolismo
2.
Mol Imaging Biol ; 25(2): 314-323, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35906512

RESUMO

PURPOSE: To image colon-expressed alternatively spliced D domain of tenascin C in preclinical colitis models using near infrared (NIR)-labeled targeted molecular imaging agents. PROCEDURES: A human IgG1 with nanomolar binding affinity specific to the alternatively spliced D domain of tenascin C was generated. Immunohistochemistry identified disease-specific expression of this extracellular matrix protein in the colon of mice given dextran sulfate sodium in the drinking water. The antibody reagent was labeled with the NIR fluorophore IRDye 800CW via amine chemistry and intravenously dosed to evaluate in vivo targeting specificity. Increasing doses of imaging agent were given to estimate the saturating dose. RESULTS: The NIR-labeled proteins successfully targeted colonic lesions in a murine model of colitis. Co-administration of a molar excess competing unlabeled dose reduced normalized uptake in diseased colon by > 70%. Near infrared ex vivo images of colon resected from diseased animals showed saturation at doses exceeding 1 nmol and was confirmed with additional quantitative ex vivo biodistribution. Cellular-level specificity and protein stability were assessed via microscopy. CONCLUSIONS: Our imaging data suggest the alternatively spliced D domain of tenascin C is a promising target for delivery-based applications in inflammatory bowel diseases.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Tenascina , Distribuição Tecidual , Colite/patologia
3.
Physiol Rep ; 6(6): e13652, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29595878

RESUMO

Skeletal muscle physiology and metabolism are regulated by complex networks of intracellular signaling pathways. Among many of these pathways, the protein kinase AKT plays a prominent role. While three AKT isoforms have been identified (AKT1, AKT2, and AKT3), surprisingly little is known regarding isoform-specific expression of AKT in human skeletal muscle. To address this, we examined the expressions of each AKT isoform in muscle biopsy samples collected from the vastus lateralis of healthy male adults at rest. In muscle, AKT2 was the most highly expressed AKT transcript, exhibiting a 15.4-fold increase over AKT1 and AKT3 transcripts. Next, the abundance of AKT protein isoforms was determined using antibody immunoprecipitation followed by Liquid Chromatography-Parallel Reaction Monitoring/Mass Spectrometry. Immunoprecipitation was performed using either mouse or rabbit pan AKT antibodies that were immunoreactive with all three AKT isoforms. We found that AKT2 was the most abundant AKT isoform in human skeletal muscle (4.2-fold greater than AKT1 using the rabbit antibody and 1.6-fold greater than AKT1 using the mouse antibody). AKT3 was virtually undetectable. Next, cultured primary human myoblasts were virally-transduced with cDNAs encoding either wild-type (WT) or kinase-inactive AKT1 (AKT1-K179M) or AKT2 (AKT2-K181M) and allowed to terminally differentiate. Myotubes expressing WT-AKT1 or WT-AKT2 showed enhanced fusion compared to control myotubes, while myotubes expressing AKT1-K179M showed a 14% reduction in fusion. Myotubes expressing AKT2-K181M displayed 63% decreased fusion compared to control. Together, these data identify AKT2 as the most highly-expressed AKT isoform in human skeletal muscle and as the principal AKT isoform regulating human myoblast differentiation.


Assuntos
Músculo Esquelético/enzimologia , Proteínas Proto-Oncogênicas c-akt/biossíntese , Adulto , Diferenciação Celular/fisiologia , Humanos , Isoenzimas , Masculino , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/enzimologia
4.
Cell Rep ; 20(3): 709-720, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28723572

RESUMO

Identification of tissue-specific and developmentally active enhancers provides insights into mechanisms that control gene expression during embryogenesis. However, robust detection of these regulatory elements remains challenging, especially in vertebrate genomes. Here, we apply fluorescent-activated nuclei sorting (FANS) followed by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) to identify developmentally active endothelial enhancers in the zebrafish genome. ATAC-seq of nuclei from Tg(fli1a:egfp)y1 transgenic embryos revealed expected patterns of nucleosomal positioning at transcriptional start sites throughout the genome and association with active histone modifications. Comparison of ATAC-seq from GFP-positive and -negative nuclei identified more than 5,000 open elements specific to endothelial cells. These elements flanked genes functionally important for vascular development and that displayed endothelial-specific gene expression. Importantly, a majority of tested elements drove endothelial gene expression in zebrafish embryos. Thus, FANS-assisted ATAC-seq using transgenic zebrafish embryos provides a robust approach for genome-wide identification of active tissue-specific enhancer elements.


Assuntos
Núcleo Celular , Endotélio/metabolismo , Elementos Facilitadores Genéticos/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Biochem Biophys Res Commun ; 482(4): 1420-1426, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27965101

RESUMO

Skeletal muscle metabolic homeostasis is maintained through numerous biochemical and physiological processes. Two principal molecular regulators of skeletal muscle metabolism include AMP-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3K); however, PI3K exists as multiple isoforms, and specific metabolic actions of each isoform have not yet been fully elucidated in skeletal muscle. Given this lack of knowledge, we performed a series of experiments to define the extent to which PI3K p110ß mediated expression and (or) activation of AMPK in skeletal muscle. To determine the effect of p110ß inhibition on AMPK expression and phosphorylation in cultured cells, C2C12 myoblasts were treated with a pharmacological inhibitor of p110ß (TGX-221), siRNA against p110ß, or overexpression of kinase-dead p110ß. Expression and phosphorylation of AMPK were unaffected in myoblasts treated with TGX-221 or expressing kinase-dead p110ß. However, expressions of total and phosphorylated AMPK at T172 were reduced in myoblasts treated with p110ß siRNA. When normalized to expression of total AMPK, phosphorylation of AMPK S485/491 was elevated in p110ß-deficient myoblasts. Similar results were observed in tibialis anterior muscle from mice with conditional deletion of p110ß (p110ß-mKO mice). Analysis of AMPK transcript expression revealed decreased expression of Prkaa2 in p110ß-deficient myoblasts and in p110ß-mKO muscle. Loss of p110ß had no effect on oligomycin-stimulated phosphorylation of AMPK or phosphorylated Acetyl-CoA carboxylase (ACC), although oligomycin-induced AMPK and ACC phosphorylation were increased in p110ß-deficient myoblasts compared to oligomycin-stimulated control myoblasts when normalized to levels of total AMPK or ACC. Overall, these results suggest that p110ß positively regulates expression of AMPK in cultured myoblasts and in skeletal muscle in vivo; moreover, despite the reduced abundance of AMPK in p110ß-deficient myoblasts, loss of p110ß does not appear to impair AMPK activation following stimulus. These findings thus reveal a novel role for p110ß in mediating skeletal muscle metabolic signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Regulação da Expressão Gênica , RNA Interferente Pequeno/metabolismo , Acetil-CoA Carboxilase/metabolismo , Animais , Catálise , Linhagem Celular , Deleção de Genes , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculos/metabolismo , Mioblastos/metabolismo , Fosforilação
6.
Growth Horm IGF Res ; 32: 14-21, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27647425

RESUMO

OBJECTIVE: Skeletal muscle regeneration is a complex process involving the coordinated input from multiple stimuli. Of these processes, actions of the insulin-like growth factor-I (IGF-I) and phosphoinositide 3-kinase (PI3K) pathways are vital; however, whether IGF-I or PI3K expression is modified during regeneration relative to initial damage intensity is unknown. The objective of this study was to determine whether mRNA expression of IGF-I/PI3K pathway components was differentially regulated during muscle regeneration in mice in response to traumatic injury induced by freezing of two different durations. DESIGN: Traumatic injury was imposed by applying a 6-mm diameter cylindrical steel probe, cooled to the temperature of dry ice (-79°C), to the belly of the left tibialis anterior muscle of 12-week-old C57BL/6J mice for either 5s (5s) or 10s (10s). The right leg served as the uninjured control. RNA was obtained from injured and control muscles following 3, 7, and 21days recovery and examined by real-time PCR. Expression of transcripts within the IGF, PI3K, and Akt families, as well as for myogenic regulatory factors and micro-RNAs were studied. RESULTS: Three days following injury, there was significantly increased expression of Igf1, Igf2, Igf1r, Igf2r, Pik3cb, Pik3cd, Pik3cg, Pik3r1, Pik3r5, Akt1, and Akt3 in response to either 5s or 10s injury compared to uninjured control muscle. There was a significantly greater expression of Pik3cb, Pik3cd, Pik3cg, Pik3r5, Akt1, and Akt3 in 10s injured muscle compared to 5s injured muscle. Seven days following injury, we observed significantly increased expression of Igf1, Igf2, Pik3cd, and Pik3cg in injured muscle compared to control muscle in response to 10s freeze injury. We also observed significantly reduced expression of Igf1r and miR-133a in response to 5s freeze injury compared to control muscle, and significantly reduced expression of Ckm, miR-1 and miR-133a in response to 10s freeze injury as compared to control. Twenty-one days following injury, 5s freeze-injured muscle exhibited significantly increased expression of Igf2, Igf2r, Pik3cg, Akt3, Myod1, Myog, Myf5, and miR-206 compared to control muscle, while 10s freeze-injured muscles showed significantly increased expression of Igf2, Igf2r, Pik3cb, Pik3cd, Pik3r5, Akt1, Akt3, and Myog compared to control. Expression of miR-1 was significantly reduced in 10s freeze-injured muscle compared to control muscle at this time. There were no significant differences in RNA expression between 5s and 10s injury at either 7d or 21d recovery in any transcript examined. CONCLUSIONS: During early skeletal muscle regeneration in mice, transcript expressions for some components of the IGF-I/PI3K pathway are sensitive to initial injury intensity induced by freeze damage.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Fosfatidilinositol 3-Quinases/genética , Regeneração/genética , Animais , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real
7.
Biochem Biophys Res Commun ; 469(4): 1117-22, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26742424

RESUMO

AMP-activated protein kinase (AMPK) is a serine/threonine kinase that functions as a sensor of intracellular energy. Activation of AMPK is associated with increased phosphorylation of the α-subunit at threonine 172 (T172) and decreased phosphorylation at serine 485 in AMPKα1 and serine 491 in AMPKα2 (S485/491). One potential mediator of AMPK phosphorylation is phosphatidylinositol 3-kinase (PI3K); however, the mechanism and the identities of the specific PI3K isoforms that regulate AMPK activation are not known. To determine whether PI3K p110α regulated AMPK activation in muscle cells, C2C12 myoblasts were subjected to pharmacological inhibition of p110α, siRNA directed against p110α, or overexpression of constitutively-active or dominant negative p110α. Chemical inhibition, siRNA, and expression of dominant-negative p110α were all associated with increased AMPK T172 phosphorylation, whereas expression of constitutively-active p110α reduced T172 phosphorylation. Conversely, pharmacological inhibition of p110α reduced AMPK S485/491 phosphorylation, while constitutively-active p110α increased AMPK S485/491 phosphorylation. This p110α-mediated increase in AMPK S485/491 phosphorylation was eliminated in the presence of the Akt inhibitor MK2206, suggesting that p110α-mediated phosphorylation of AMPKα at S485/491 is Akt-dependent. In response to oligomycin or serum-starvation, AMPK T172 phosphorylation was elevated in p110α-deficient myoblasts compared to control myoblasts. Overall, our findings identify PI3K p110α as a mediator of AMPK phosphorylation in myoblasts.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Mioblastos/enzimologia , Estresse Oxidativo/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linhagem Celular , Classe I de Fosfatidilinositol 3-Quinases , Camundongos , Fosforilação
8.
Mol Cell Biol ; 35(7): 1182-96, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25605332

RESUMO

Phosphoinositide 3-OH kinase (PI3K) regulates a number of developmental and physiologic processes in skeletal muscle; however, the contributions of individual PI3K p110 catalytic subunits to these processes are not well-defined. To address this question, we investigated the role of the 110-kDa PI3K catalytic subunit ß (p110ß) in myogenesis and metabolism. In C2C12 cells, pharmacological inhibition of p110ß delayed differentiation. We next generated mice with conditional deletion of p110ß in skeletal muscle (p110ß muscle knockout [p110ß-mKO] mice). While young p110ß-mKO mice possessed a lower quadriceps mass and exhibited less strength than control littermates, no differences in muscle mass or strength were observed between genotypes in old mice. However, old p110ß-mKO mice were less glucose tolerant than old control mice. Overexpression of p110ß accelerated differentiation in C2C12 cells and primary human myoblasts through an Akt-dependent mechanism, while expression of kinase-inactive p110ß had the opposite effect. p110ß overexpression was unable to promote myoblast differentiation under conditions of p110α inhibition, but expression of p110α was able to promote differentiation under conditions of p110ß inhibition. These findings reveal a role for p110ß during myogenesis and demonstrate that long-term reduction of skeletal muscle p110ß impairs whole-body glucose tolerance without affecting skeletal muscle size or strength in old mice.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/enzimologia , Músculo Esquelético/crescimento & desenvolvimento , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/genética , Regulação da Expressão Gênica no Desenvolvimento , Glucose/metabolismo , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...