Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38782879

RESUMO

PURPOSE: Biomaterial and stem cell delivery are promising approaches to treating myocardial infarction. However, the mechanical and biochemical mechanisms underlying the therapeutic benefits require further clarification. This study aimed to assess the deformation of stem cells injected with the biomaterial into the infarcted heart. METHODS: A microstructural finite element model of a mid-wall infarcted myocardial region was developed from ex vivo microcomputed tomography data of a rat heart with left ventricular infarct and intramyocardial biomaterial injectate. Nine cells were numerically seeded in the injectate of the microstructural model. The microstructural and a previously developed biventricular finite element model of the same rat heart were used to quantify the deformation of the cells during a cardiac cycle for a biomaterial elastic modulus (Einj) ranging between 4.1 and 405,900 kPa. RESULTS: The transplanted cells' deformation was largest for Einj = 7.4 kPa, matching that of the cells, and decreased for an increase and decrease in Einj. The cell deformation was more sensitive to Einj changes for softer (Einj ≤ 738 kPa) than stiffer biomaterials. CONCLUSIONS: Combining the microstructural and biventricular finite element models enables quantifying micromechanics of transplanted cells in the heart. The approach offers a broader scope for in silico investigations of biomaterial and cell therapies for myocardial infarction and other cardiac pathologies.

2.
Biomech Model Mechanobiol ; 17(5): 1405-1414, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29802577

RESUMO

Within the artery intima, endothelial cells respond to mechanical cues and changes in subendothelial matrix stiffness. Recently, we found that the aging subendothelial matrix stiffens heterogeneously and that stiffness heterogeneities are present on the scale of one cell length. However, the impacts of these complex mechanical micro-heterogeneities on endothelial cells have not been fully understood. Here, we simulate the effects of matrices that mimic young and aged vessels on single- and multi-cell endothelial cell models and examine the resulting cell basal strain profiles. Although there are limitations to the model which prohibit the prediction of intracellular strain distributions in alive cells, this model does introduce mechanical complexities to the subendothelial matrix material. More heterogeneous basal strain distributions are present in the single- and multi-cell models on the matrix mimicking an aged artery over those exhibited on the young artery. Overall, our data indicate that increased heterogeneous strain profiles in endothelial cells are displayed in silico when there is an increased presence of microscale arterial mechanical heterogeneities in the matrix.


Assuntos
Simulação por Computador , Células Endoteliais/citologia , Matriz Extracelular/metabolismo , Estresse Mecânico , Animais , Vasos Sanguíneos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos
3.
J Theor Biol ; 365: 433-44, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25452137

RESUMO

It is generally agreed on that trabecular bone permeability, a physiologically important quantity, is governed by the material׳s (vascular or intertrabecular) porosity as well as by the viscosity of the pore-filling fluids. Still, there is less agreement on how these two key factors govern bone permeability. In order to shed more light onto this somewhat open issue, we here develop a random homogenization scheme for upscaling Poiseuille flow in the vascular porosity, up to Darcy-type permeability of the overall porous medium "trabecular bone". The underlying representative volume element of the macroscopic bone material contains two types of phases: a spherical, impermeable extracellular bone matrix phase interacts with interpenetrating cylindrical pore channel phases that are oriented in all different space directions. This type of interaction is modeled by means of a self-consistent homogenization scheme. While the permeability of the bone matrix equals to zero, the permeability of the pore phase is found through expressing the classical Hagen-Poiseuille law for laminar flow in the format of a "micro-Darcy law". The upscaling scheme contains pore size and porosity as geometrical input variables; however, they can be related to each other, based on well-known relations between porosity and specific bone surface. As two key results, validated through comprehensive experimental data, it appears (i) that the famous Kozeny-Carman constant (which relates bone permeability to the cube of the porosity, the square of the specific surface, as well as to the bone fluid viscosity) needs to be replaced by an again porosity-dependent rational function, and (ii) that the overall bone permeability is strongly affected by the pore fluid viscosity, which, in case of polarized fluids, is strongly increased due to the presence of electrically charged pore walls.


Assuntos
Osso e Ossos/fisiologia , Modelos Biológicos , Reologia , Humanos , Permeabilidade , Porosidade , Reprodutibilidade dos Testes , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...