Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(5)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35625721

RESUMO

The intermediate filament protein desmin is essential for maintaining the structural integrity of sarcomeres, the fundamental unit of cardiac muscle. Diabetes mellitus (DM) can cause desmin to become dysregulated, following episodes of nitrosative stress, through the activation of the iNOS/mTOR/TIMP-1 pathway, thereby stimulating collagen deposition in the myocardium. In this study, type 2 diabetes mellitus (T2DM) was induced in rats. One group of animals was pre-treated with metformin (200 mg/kg) prior to diabetes induction and subsequently kept on metformin until sacrifice at week 12. Cardiac injuries developed in the diabetic rats as demonstrated by a significant (p < 0.0001) inhibition of desmin immunostaining, profound sarcomere ultrastructural alterations, substantial damage to the left ventricular tissue, collagen deposition, and abnormal ECG recordings. DM also significantly induced the cardiac expression of inducible nitric oxide synthase (iNOS), mammalian target of rapamycin (mTOR), and the profibrogenic biomarker tissue inhibitor of metalloproteinase-1 (TIMP-1). The expression of all these markers was significantly inhibited by metformin. In addition, a significant (p < 0.0001) correlation between desmin tissue levels/sarcomere damage and glycated hemoglobin, heart rate, iNOS, mTOR, and fibrosis was observed. These findings demonstrate an association between damage of the cardiac contractile unit­desmin and sarcomere­and the iNOS/mTOR/TIMP-1/collagen axis of fibrosis in T2DM-induced cardiomyopathy, with metformin exhibiting beneficial cardiovascular pleiotropic effects.

2.
Drug Chem Toxicol ; 45(1): 1-7, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32013615

RESUMO

Acute renal failure induced by a toxic dose of acetaminophen (also known as paracetamol, or APAP) is common in both humans and experimental animal models. Glomerular ultrastructural alterations induced by APAP overdose associated with the suppression of biomarkers of kidney injury have not been investigated before. Also, we investigated whether the combined polyphenolic antioxidants and anti-inflammatory compounds, resveratrol (RES) and quercetin (QUR) can protect against APAP-induced nephrotoxicity. Rats either received a single dose of APAP (2 g/kg) before being sacrificed after 24 hours or were pretreated for 7 days with combined doses of RES (30 mg/kg) and QUR (50 mg/kg) before being given a single dose of APAP and then sacrificed 24 hours post APAP ingestion. APAP significantly (p < 0.05) increased blood levels of urea, creatinine, malondialdehyde (MDA), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), which were effectively reduced by RES + QUR. In addition, APAP overdose induced the tissue expression of the apoptotic biomarker, p53, and caused profound kidney damage as demonstrated by substantial alterations to the glomerular basement membrane, podocytes, endothelial cells, widening of Bowman's space, and vacuolation of the cells lining the parietal layer, which were substantially protected by RES + QUR. Furthermore, a significant (p < 0.0001) positive correlation was observed between either glomerular basement membrane or podocyte foot processes and these parameters, urea, creatinine, MDA, and TNF-α. Thus, we conclude that APAP induces alterations to the glomerulus ultrastructure, which is protected by resveratrol plus quercetin, which also reduces blood levels of urea and creatinine, and biomarkers of oxidative stress and inflammation.


Assuntos
Injúria Renal Aguda , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/toxicidade , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Apoptose , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Células Endoteliais , Fígado/metabolismo , Estresse Oxidativo , Quercetina/farmacologia , Ratos , Resveratrol/farmacologia
3.
Arch Physiol Biochem ; 127(3): 266-272, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31250674

RESUMO

BACKGROUND: We sought to investigate the protective effect of insulin against type 1 diabetes mellitus (T1DM)-induced aortic injury (aortopathy) associated with the inhibition of biomarkers of vascular injury. MATERIAL AND METHODS: T1DM was induced in rats by streptozotocin (STZ) (65 mg/kg), and the protection group started insulin treatment 2 days post diabetic induction and continued until being sacrificed at week 8. RESULTS: Aortopathy was developed in the diabetic rats as demonstrated by profound alterations to the aorta ultrastructure, which was substantially protected by insulin. In addition, insulin significantly inhibited diabetes-induced dyslipidaemia, soluble vascular cell adhesion molecule-1 (sVCAM-1) and soluble intercellular adhesion molecule-1 (sICAM-1), oxidative stress, and inflammation. However, blood levels of these biomarkers in the insulin-treated group were still significant (p < .05) compared with the control group, whereas insulin treatment returned blood glucose and triglyceride to control levels. CONCLUSIONS: We demonstrate effective protection by insulin against T1DM-induced aortopathy in rats, which is associated with the inhibition of vascular injury biomarkers.


Assuntos
Aorta/efeitos dos fármacos , Diabetes Mellitus Tipo 1/complicações , Insulina/farmacologia , Lesões do Sistema Vascular/complicações , Lesões do Sistema Vascular/prevenção & controle , Animais , Aorta/patologia , Biomarcadores/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Lesões do Sistema Vascular/metabolismo
4.
Ultrastruct Pathol ; 44(3): 316-323, 2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32536288

RESUMO

Diabetes represents a major public health problem and an estimated 70% of people with diabetes die of cardiovascular complications. The protective effect of insulin treatment against ultrastructural damage to the tunica intima and tunica media of the aorta induced by type 2 diabetes mellitus (T2DM) has not been investigated before using transmission electron microscopy (TEM). Therefore, we induced T2DM in rats using high fat diet and streptozotocin (50 mg/kg) and administered insulin daily by i.v injection for 8 weeks to the treatment group. Whereas, the T2DM control group were left untreated for the duration of the experiment. A comparison was also made between the effect of insulin on aortic tissue and the blood level of biomarkers of vascular injury, inflammation, and oxidative stress. T2DM induced profound ultrastructural damage to the aortic endothelium and vascular smooth muscle cells, which were substantially protected with insulin. Furthermore, insulin returned blood sugar to a control level and significantly (p < .05) inhibited diabetic up-regulation of endothelial and leukocyte intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion protein 1 (VCAM-1), endothelial cell adhesion molecules, P-selectin and E-selectin, tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP), and malondialdehyde (MDA). Furthermore, insulin augmented the blood level of the anti-oxidant enzyme superoxide dismutase (SOD). We conclude that in a rat model of T2DM, insulin treatment substantially reduces aortic injury secondary to T2DM for a period of 8 weeks, possibly due to the inhibition of hyperglycemia, vascular activation, inflammation, and oxidative stress.


Assuntos
Aorta/ultraestrutura , Diabetes Mellitus Tipo 2/complicações , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Animais , Aorta/patologia , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Endotélio Vascular/efeitos dos fármacos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
5.
Ultrastruct Pathol ; 44(3): 273-282, 2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32404018

RESUMO

Osteoarthritis (OA) secondary to diabetes affects millions of people worldwide and can lead to disability. The protective effect of metformin pretreatment against alterations to the articular cartilage ultrastructure induced by type 2 diabetes mellitus (T2DM) associated with the inhibition of oxidative stress and inflammation has not been investigated before. Therefore, we induced T2DM in rats (the model group) using high carbohydrate and fat diet and a single injection of streptozotocin (50 mg/kg body weight). The protective group of rats started metformin (200 mg/kg body weight) treatment 14 days before diabetic induction and continued on metformin until the end of the experiment at week 12. Harvested tissues obtained from knee joints were prepared for staining with hematoxylin and eosin (H&E), safranin o staining, and electron microscopy. Histology images showed that OA was developed in the T2DM rats as demonstrated by a substantial damage to the articular cartilage and profound chondrocyte and territorial matrix ultrastructural alterations, which were partially protected by metformin. In addition, metformin significantly (p < .05) reduced hyperglycemia, glycated hemoglobin (HbA1 c), malondialdehyde (MDA), high sensitivity C-reactive protein (hs-CRP), and interleukin-6 blood levels induced by diabetes. Furthermore, a significant (p ≤ 0.015) correlation between either OA cartilage grade score or the thickness of the articular cartilage and the blood levels of HbA1 c, hs-CRP, MDA, superoxide dismutase (SOD) were observed. These findings demonstrate effective protection of the articular cartilage by metformin against damage induced secondary to T2DM in rats, possibly due to the inhibition of hyperglycemia and biomarkers of oxidative stress and inflammation.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/ultraestrutura , Diabetes Mellitus Tipo 2/patologia , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Animais , Cartilagem Articular/patologia , Diabetes Mellitus Experimental/patologia , Inflamação/patologia , Articulação do Joelho/efeitos dos fármacos , Articulação do Joelho/patologia , Articulação do Joelho/ultraestrutura , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos
6.
Pharmacology ; 104(3-4): 157-165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31185481

RESUMO

AIMS: We sought to determine whether insulin can protect against type 1 diabetes mellitus (T1DM)-induced cardiac ultrastructural alterations in an animal model of the disease. This has not been investigated before. METHODS: Rats were either injected once with 65 mg/kg streptozotocin (STZ) before being sacrificed after 8 weeks or were treated with a daily injection of insulin 2 days by STZ and continued until being sacrificed. RESULTS: Harvested tissues obtained from left ventricles in the untreated T1DM rats showed substantial damage to the cardiomyocyte ultrastructure as demonstrated by disintegrated myofibrils and their sarcomeres, damaged mitochondria and lipid droplets, which was substantially protected by insulin. Insulin also significantly inhibited T1DM-induced hyperglycemia (p < 0.001), dyslipidemia (p < 0.0001), malondialdehyde (MDA; p < 0.0001), tumor necrosis factor-alpha (TNF-α; p < 0.001) and interleukin-6 (p < 0.001). We further demonstrated a significant (p ≤ 0.001) correlation between either sarcomere or mitochondrial injury scoring and the serum levels of glucose, dyslipidemia, and biomarkers of oxidative stress (OxS) and inflammation. CONCLUSIONS: These results indicate that insulin effectively suppresses left ventricular cardiomyocyte ultrastructural damage, which substantially slows down the progression of diabetic cardiomyopathy for 8 weeks in a rat model of T1DM, possibly due to the glycemic control and inhibition of dyslipidemia, OxS and inflammation.


Assuntos
Biomarcadores/metabolismo , Diabetes Mellitus Tipo 1/complicações , Ventrículos do Coração/efeitos dos fármacos , Inflamação/tratamento farmacológico , Insulina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ventrículos do Coração/metabolismo , Hipoglicemiantes/farmacologia , Inflamação/metabolismo , Masculino , Malondialdeído/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...