Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(34): 22180-22187, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497909

RESUMO

Nanocrystalline metal ferrites (MFe2O4, M = Co, Ni, Cu, Mg, and Zn) were successfully synthesized via autocombustion synthesis using egg white. X-ray diffraction (XRD) measurements revealed the crystallization of the entire ferrites either in the tetragonal structure, such as in the case of CuFe2O4, or cubic spinels such as in other studied ferrites. The Fourier transform infrared spectral study revealed the characteristic vibration bands of ferrites. Compared to other synthesis methods, the observed variation in the obtained structural parameters could be due to the different cation distribution of the prepared ferrites. In agreement with XRD measurements, the transmission electron microscopy images showed agglomerated particles with cubic morphology for all ferrites. On the other hand, CuFe2O4 showed tetragonal morphology. The magnetization values were found to vary with the type of the metal ion, and CoFe2O4 showed the highest one (42.8 emu/g). Generally, the lower magnetization values obtained than those reported in the literature for all studied ferrites could be attributed to the smaller particle sizes or the cation redistribution. The obtained coercivity values are observed to be higher than their related values in the literature, exhibiting the impact of the present synthesis route. Ac-conductivity as a function of temperature and frequency indicated semiconducting properties with the observed change in the conduction mechanism by increasing the temperature. The obtained low dielectric constant values could suggest using the entire ferrites in high-frequency applications such as microwave devices.

2.
PLoS One ; 11(5): e0156093, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27228169

RESUMO

Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.


Assuntos
Interpretação Estatística de Dados , Esmalte Dentário/efeitos da radiação , Dentina/efeitos da radiação , Terapia a Laser , Lasers , Extração Dentária/métodos , Dureza , Humanos , Nanotecnologia , Espectrometria por Raios X
3.
Nanoscale Res Lett ; 10(1): 358, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26377211

RESUMO

Carbon nanotubes have been of great interest because of their simplicity and ease of synthesis. The novel properties of nanostructured carbon nanotubes such as high surface area, good stiffness, and resilience have been explored in many engineering applications. Research on carbon nanotubes have shown the application in the field of energy storage, hydrogen storage, electrochemical supercapacitor, field-emitting devices, transistors, nanoprobes and sensors, composite material, templates, etc. For commercial applications, large quantities and high purity of carbon nanotubes are needed. Different types of carbon nanotubes can be synthesized in various ways. The most common techniques currently practiced are arc discharge, laser ablation, and chemical vapor deposition and flame synthesis. The purification of CNTs is carried out using various techniques mainly oxidation, acid treatment, annealing, sonication, filtering chemical functionalization, etc. However, high-purity purification techniques still have to be developed. Real applications are still under development. This paper addresses the current research on the challenges that are associated with synthesis methods, purification methods, and dispersion and toxicity of CNTs within the scope of different engineering applications, energy, and environmental impact.

4.
J Nanosci Nanotechnol ; 13(6): 4056-65, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23862448

RESUMO

In this paper, Mg0.5Zn0.5-Cu(x)Fe2O4 ferrites nanoparticles were synthesized by facile co-precipitation route and characterized in detail in terms of their structural, electrical and magnetic properties as a function of Cu concentration. The prepared samples have cubic spinel phase as confirmed by X-ray diffraction patterns. The decrease of the lattice constant and increase of X-ray density indicate the solubility of Cu ions in the spinel lattice. The AC conductivity measurements between 300 K and 773 K at different frequencies 1 KHz up to 1 MHz, showed two different behaviors as semiconductor-like at high temperature and frequency depending behavior associated with dispersion phenomena at low temperatures. The conduction mechanism in the system is influenced by Cu concentration and the dominant one is the hopping conduction mechanism. Dielectric measurements at the same conditions of temperatures and frequencies exhibited that the dielectric loss increases with increasing the temperature and decreasing the frequency indicating the semiconducting nature of the ferrite compounds. An anomalous behavior of the dielectric loss is observed in samples with high Cu content which explained in terms of resonance between frequency accompanied the electronic hopping and the frequency of the external electric field. The analysis of Mössbauer spectra revealed that copper free compound is super-paramagnetically relaxed in nature and zinc free compound demonstrates ferrimagnetic order. Moreover, hyperfine field spectrum shows the migration of Cu ions from octahedral to tetrahedral site in zinc free compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...