Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35270995

RESUMO

Prostate cancer, which is also known as prostatic adenocarcinoma, is an unconstrained growth of epithelial cells in the prostate and has become one of the leading causes of cancer-related death worldwide. The survival of patients with prostate cancer relies on detection at an early, treatable stage. In this paper, we introduce a new comprehensive framework to precisely differentiate between malignant and benign prostate cancer. This framework proposes a noninvasive computer-aided diagnosis system that integrates two imaging modalities of MR (diffusion-weighted (DW) and T2-weighted (T2W)). For the first time, it utilizes the combination of functional features represented by apparent diffusion coefficient (ADC) maps estimated from DW-MRI for the whole prostate in combination with texture features with its first- and second-order representations, extracted from T2W-MRIs of the whole prostate, and shape features represented by spherical harmonics constructed for the lesion inside the prostate and integrated with PSA screening results. The dataset presented in the paper includes 80 biopsy confirmed patients, with a mean age of 65.7 years (43 benign prostatic hyperplasia, 37 prostatic carcinomas). Experiments were conducted using different well-known machine learning approaches including support vector machines (SVM), random forests (RF), decision trees (DT), and linear discriminant analysis (LDA) classification models to study the impact of different feature sets that lead to better identification of prostatic adenocarcinoma. Using a leave-one-out cross-validation approach, the diagnostic results obtained using the SVM classification model along with the combined feature set after applying feature selection (88.75% accuracy, 81.08% sensitivity, 95.35% specificity, and 0.8821 AUC) indicated that the system's performance, after integrating and reducing different types of feature sets, obtained an enhanced diagnostic performance compared with each individual feature set and other machine learning classifiers. In addition, the developed diagnostic system provided consistent diagnostic performance using 10-fold and 5-fold cross-validation approaches, which confirms the reliability, generalization ability, and robustness of the developed system.


Assuntos
Adenocarcinoma , Neoplasias da Próstata , Adenocarcinoma/diagnóstico por imagem , Idoso , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Masculino , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Reprodutibilidade dos Testes
2.
Sensors (Basel) ; 21(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917035

RESUMO

Prostate cancer is one of the most identified cancers and second most prevalent among cancer-related deaths of men worldwide. Early diagnosis and treatment are substantial to stop or handle the increase and spread of cancer cells in the body. Histopathological image diagnosis is a gold standard for detecting prostate cancer as it has different visual characteristics but interpreting those type of images needs a high level of expertise and takes too much time. One of the ways to accelerate such an analysis is by employing artificial intelligence (AI) through the use of computer-aided diagnosis (CAD) systems. The recent developments in artificial intelligence along with its sub-fields of conventional machine learning and deep learning provide new insights to clinicians and researchers, and an abundance of research is presented specifically for histopathology images tailored for prostate cancer. However, there is a lack of comprehensive surveys that focus on prostate cancer using histopathology images. In this paper, we provide a very comprehensive review of most, if not all, studies that handled the prostate cancer diagnosis using histopathological images. The survey begins with an overview of histopathological image preparation and its challenges. We also briefly review the computing techniques that are commonly applied in image processing, segmentation, feature selection, and classification that can help in detecting prostate malignancies in histopathological images.


Assuntos
Inteligência Artificial , Neoplasias da Próstata , Diagnóstico por Computador , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Masculino , Neoplasias da Próstata/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...