Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Dev Technol ; 26(6): 693-700, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33944661

RESUMO

Apigenin is a natural flavonoid which is claimed to have many pharmacological activities ranging from simple anti-inflammatory to anticancer action. However, poor dissolution slowed the advancement of this drug through the development pipelines. The objective of this work was to probe ethanol-aided kneading of apigenin with arginine as a new strategy for enhanced dissolution rate. The work was extended to develop rapidly disintegrating tablets of apigenin. Apigenin was mixed with increasing molar ratios of arginine before ethanol-aided kneading. The resulting products were examined using Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction in addition to probing the dissolution characteristics of apigenin. The analytical techniques highlighted the existence of new crystalline species with a possibility of salt formation. The recorded alterations in the crystalline properties were associated with a significant enhancement in the dissolution rate of apigenin. The presence of arginine did not have any negative effect of the cytotoxic power of apigenin. Optimum formulation was successfully prepared as rapidly disintegrating tablets which showed fast liberation of apigenin. The study introduced arginine as a potential excipient for enhanced dissolution of apigenin after ethanol-assisted kneading.


Assuntos
Apigenina/síntese química , Arginina/síntese química , Química Farmacêutica/métodos , Desenvolvimento de Medicamentos/métodos , Etanol/síntese química , Apigenina/metabolismo , Apigenina/farmacologia , Arginina/metabolismo , Arginina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Etanol/metabolismo , Etanol/farmacologia , Células HCT116 , Humanos , Solubilidade , Comprimidos , Difração de Raios X/métodos
2.
Molecules ; 25(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271831

RESUMO

Curcumin is a natural compound that has many medical applications. However, its low solubility and poor stability could impede its clinical applications. The present study aimed to formulate dry proniosomes to overcome these pitfalls and improve the therapeutic efficacy of Curcumin. Curcumin-loaded proniosomes were fabricated by the slurry method according to 32 factorial design using Design-Expert software to demonstrate the impact of different independent variables on entrapment efficiency (EE%) and % drug released after 12 h (Q12h). The optimized formula (F5) was selected according to the desirability criteria. F5 exhibited good flowability and appeared, after reconstitution, as spherical nanovesicles with EE% of 89.94 ± 2.31% and Q12h of 70.89 ± 1.62%. F5 demonstrated higher stability and a significant enhancement of Q12h than the corresponding niosomes. The docking study investigated the ability of Curcumin to bind effectively with the active site of DNA polymerase of Herpes simplex virus (HSV). The antiviral activity and the safety of F5 were significantly higher than Curcumin. F5 improved the safety of Acyclovir (ACV) and reduced its effective dose that produced a 100% reduction of viral plaques. Proniosomes could be promising stable carriers of Curcumin to be used as a safe and efficient antiviral agent.


Assuntos
Antivirais/farmacologia , Curcumina/farmacologia , Sistemas de Liberação de Medicamentos , Herpes Simples/tratamento farmacológico , Lipossomos/administração & dosagem , Nanopartículas/administração & dosagem , Simplexvirus/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antivirais/química , Chlorocebus aethiops , Curcumina/química , Herpes Simples/induzido quimicamente , Técnicas In Vitro , Lipossomos/química , Nanopartículas/química , Células Vero
3.
Pharmaceutics ; 12(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142816

RESUMO

Candesartan Cilexetil (CC) is a prodrug widely used in the treatment of hypertension and heart failure, but it has some limitations, such as very poor aqueous solubility, high affinity to P-glycoprotein efflux mechanism, and hepatic first-pass metabolism. Therefore, it has very low oral bioavailability. In this study, glyceryl monostearate (GMS) and Capryol™ 90 were selected as solid and liquid lipids, respectively, to develop CC-NLC (nanostructured lipid carrier). CC was successfully encapsulated into NLP (CC-NLC) to enhance its oral bioavailability. CC-NLC was formulated using a hot homogenization-ultrasonication technique, and the physicochemical properties were characterized. The developed CC-NLC formulation was showed in nanometric size (121.6 ± 6.2 nm) with high encapsulation efficiency (96.23 ± 3.14%). Furthermore, it appeared almost spherical in morphology under a transmission electron microscope. The surgical experiment of the designed CC-NLC for absorption from the gastrointestinal tract revealed that CC-NLC absorption in the stomach was only 15.26% of that in the intestine. Otherwise, cellular uptake study exhibit that CC-NLCs should be internalized through the enterocytes after that transported through the systemic circulation. The pharmacokinetic results indicated that the oral bioavailability of CC was remarkably improved above 2-fold after encapsulation into nanostructured lipid carriers. These results ensured that nanostructured lipid carriers have a highly beneficial effect on improving the oral bioavailability of poorly water-soluble drugs, such as CC.

4.
Drug Deliv ; 27(1): 1218-1230, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32772730

RESUMO

Transdermal delivery of non-steroidal anti-inflammatory drugs (NSAIDs) is an effective route of drug administration, as it directs the drug to the inflamed site with reduced incidence of systemic adverse effects such as gastric hemorrhage and ulcers. Tenoxicam (TNX) is a member of NSAIDs that are marketed only as oral tablets due to very poor absorption through the skin. The current study intended to formulate and characterize a hydrogel loaded with nanostructured lipid carriers (NLCs) to enhance the transdermal delivery of TNX. Six formulations of TNX were formulated by slight modifications of high shear homogenization and ultrasonication method. The selected formula was characterized for their particle size, polydispersity index (PDI), zeta potential, entrapment efficiency (EE), in-vitro drug release and ex-vivo skin permeation studies. Moreover, the effectiveness of the developed formula was studied in-vivo using carrageenan-induced paw edema and hyperalgesia model in irradiated rats. Formula F4 was chosen from six formulations, as the average diameter was 679.4 ± 51.3 nm, PDI value of about 0.02, zeta potential of -4.24 mV, EE of 92.36%, globules nanoparticles without aggregations and absence of interactions in the developed formula. Additionally, the in-vivo study showed the efficacy of formula F4 (TNX-NLCs hydrogel) equivalent to oral TNX in reducing the exaggerated inflammatory response induced by carrageenan after irradiation. In conclusion, the present findings suggest that TNX-NLCs hydrogel could be a potential transdermal drug delivery system alternative to the oral formulation for the treatment of various inflammatory conditions.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Lipídeos/química , Nanoestruturas/química , Piroxicam/análogos & derivados , Administração Cutânea , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Carragenina/efeitos adversos , Química Farmacêutica , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Edema/tratamento farmacológico , Tamanho da Partícula , Piroxicam/administração & dosagem , Piroxicam/farmacologia , Ratos , Pele/metabolismo , Absorção Cutânea , Propriedades de Superfície
5.
Pharmaceutics ; 12(5)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443679

RESUMO

Acetazolamide (ACZ) is a potent carbonic anhydrase inhibitor that is used for the treatment of glaucoma. Its oral administration causes various undesirable side effects. This study aimed to formulate transgelosomes (TGS) for enhancing the ocular delivery of ACZ. ACZ-loaded transfersomes were formulated by the ethanol injection method, using phosphatidylcholine (PC) and different edge activators, including Tween 80, Span 60, and Cremophor RH 40. The effects of the ratio of lipid to surfactant and type of surfactant on % drug released after 8 h (Q8h) and entrapment efficiency (EE%) were investigated by using Design-Expert software. The optimized formula was formulated as TGS, using poloxamers as gelling agents. In vitro and in vivo characterization of ACZ-loaded TGS was performed. According to optimization study, F8 had the highest desirability value and was chosen as the optimized formula for preparing TGS. F8 appeared as spherical elastic nanovesicles with Q8h of 93.01 ± 3.76% and EE% of 84.44 ± 2.82. Compared to a free drug, TGS exhibited more prolonged drug release of 71.28 ± 0.46% after 8 h, higher ex vivo permeation of 66.82 ± 1.11% after 8 h and a significant lowering of intraocular pressure (IOP) for 24 h. Therefore, TGS provided a promising technique for improving the corneal delivery of ACZ.

6.
Drug Dev Ind Pharm ; 45(8): 1215-1223, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30661420

RESUMO

Objectives: Enhance the dissolution rate of bicalutamide via co-crystallization with sucralose (sweetener), with the aim to develop rapidly disintegrating tablets with subsequent prompt dissolution. Significance: Bicalutamide is antiandrogenic agent for the treatment of prostate cancer but has low and variable oral bioavailability, mainly attributed to poor dissolution. Co-crystallization with benign excipients is promising for dissolution enhancement with the additive serving dual functions. The benefit will become greater if dissolution enhancement is associated with the development of orodispersible tablets which is suitable for elderly patients who are the most vulnerable for prostate cancer. Methods: Bicalutamide was dissolved in acetone in the presence of increasing molar ratios of sucralose. The solvent was evaporated while mixing to deposit crystals that were subjected to wet co-grinding until drying. The developed solids were characterized using Fourier transform infrared spectroscopy, differential thermal analysis and X-ray diffraction in addition to monitoring bicalutamide dissolution. Results: Instrumental analysis provided evidences for co-crystallization which was initiated at 1:1 molar ratio of bicalutamide to sucralose with complete co-crystallization at 1:4 molar ratio. The co-crystals provided faster bicalutamide dissolution compared with the unprocessed drug and that recrystalized from acetone in the absence of sucralose. The formulation containing bicalutamide with sucralose at 1:4 molar ratio was selected for tablet formulation into which superdisintegrants were included. The developed tablets exhibited flash disintegration with subsequent fast dissolution of bicalutamide. Conclusions: The study introduced co-crystallization of bicalutamide with sucralose as an efficient tool to enhance the dissolution rate and to develop rapidly dissolving tablets for intraoral administration.


Assuntos
Anilidas/química , Nitrilas/química , Solubilidade/efeitos dos fármacos , Comprimidos/química , Compostos de Tosil/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Cristalização/métodos , Excipientes/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Sacarose/análogos & derivados , Sacarose/química , Difração de Raios X/métodos
7.
AAPS PharmSciTech ; 17(3): 663-72, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26304932

RESUMO

Thymoquinone (TQ), obtained from black cumin (Nigella sativa), is a natural product with anti-oxidant, anti-inflammatory, and hepatoprotective effects but unfortunately with poor bioavailability. Aiming to improve its poor oral bioavailability, TQ-loaded nanostructured lipid carriers (NLCs) were prepared by high-speed homogenization followed by ultrasonication and evaluated in vitro. Bioavailability and pharmacodynamic studies were also performed. The resultant NLCs showed poor physical homogeneity in Compritol 888 ATO Pluronic F127 system which consequently produced larger particle size and polydispersity index, smaller zeta potential values, and lower short-term (30 days) physical stability than other systems. Encapsulation efficiency percentage (EE%) lied between 84.6 ± 5% and 96.2 ± 1.6%. TQ AUC0-t values were higher in animals treated with NLCs, with a relative bioavailability of 2.03- and 3.97-fold (for F9 and F12, respectively) higher than TQ suspension, indicating bioavailability enhancement by NLC formulation. Hepatoprotective effects of F12 showed significant (P < 0.05) decrease in both serum alanine amino transferase and aspartate amino transferase to reach 305.0 ± 24.88 and 304.7 ± 23.55 U/ml, respectively, when compared with untreated toxic group. Anti-oxidant efficacy of F12 showed significant (P < 0.05) decline of malondialdehyde and elevation of reduced glutatione. This improvement was also confirmed histopathologically.


Assuntos
Benzoquinonas/metabolismo , Portadores de Fármacos/metabolismo , Lipídeos/farmacocinética , Nanoestruturas , Animais , Benzoquinonas/química , Benzoquinonas/farmacologia , Disponibilidade Biológica , Química Farmacêutica , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Lipídeos/química , Lipídeos/farmacologia , Masculino , Nanoestruturas/química , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...