Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 30(4)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29215167

RESUMO

Plasmonic dipoles are famous for their strong absorptivity rather than their reflectivity. Here, the as-yet unknown specular reflection and the Brewster effect of ultrafine plasmonic dipoles, metaparticles, are introduced and exploited as the basis of new design rules for advanced applications. A configuration of "Plasmonic metaparticles on a blackbody" is demonstrated and utilized for the design of a tailored perfect-colored absorber and for visual detection of environmental dielectrics that is not readily done by extinction plasmonics. Moreover, the Plasmonic Brewster Wavelength (PBW) effect is introduced as a new platform for the naked-eye and bulk biodetection of analytes. The technique operates based on slight changes of molecular polarizability which is not detectable via conventional plasmon resonance techniques. As a specific highlight, the clinical applicability of the PBW method is demonstrated while addressing the transduction plasmonic techniques' challenge in detection of bulk refractive index changes of the healthy and diseased human serum exosomes. Finally, the sputtering-based fabrication method used here is simple, inexpensive, and scalable, and does not require the sophisticated patterning approach of lithography or precise alignment of light coupling for the biodetection.


Assuntos
Ressonância de Plasmônio de Superfície , Cor , Humanos , Refratometria
2.
Nat Commun ; 8: 15319, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28497789

RESUMO

The dynamic underwater chemistry seen in nature is inspiring for the next generation of eco-friendly nanochemistry. In this context, green synthesis of size-tailored nanoparticles in a facile and scalable manner via a dynamic process is an interesting challenge. Simulating the volcano-induced dynamic chemistry of the deep ocean, here we demonstrate the Leidenfrost dynamic chemistry occurring in an underwater overheated confined zone as a new tool for customized creation of nanoclusters of zinc peroxide. The hydrodynamic nature of the phenomenon ensures eruption of the nanoclusters towards a much colder region, giving rise to growth of monodisperse, size-tailored nanoclusters. Such nanoparticles are investigated in terms of their cytotoxicity on suspension and adherent cells to prove their applicability as cancer nanotherapeutics. Our research can pave the way for employment of the dynamic green nanochemistry in facile, scalable fabrication of size-tailored nanoparticles for biomedical applications.


Assuntos
Nanopartículas Metálicas/química , Neoplasias/terapia , Peróxidos/química , Zinco/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Química Verde/métodos , Células HT29 , Temperatura Alta , Humanos , Células Jurkat , Leucócitos Mononucleares/citologia , Nanopartículas Metálicas/ultraestrutura , Camundongos , Nanomedicina/métodos , Células U937
3.
Materials (Basel) ; 9(8)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28773753

RESUMO

We report on the fabrication, the characterization, and the optical simulation of a gold-silica nanocomposite and present its integration into a broadband anti-reflective coating (ARC) for a silicon substrate. The two-layer ARC consists of a nanocomposite (randomly distributed gold cluster in a silica matrix) and a pure silica film. We capitalize on the large refractive index of the composite to impose an abrupt phase change at the interface of the coating to diminish the light reflection from the substrate through the ultrathin nanocoating. The average reflectivity of the silicon can be reduced by such a coating to less than 0.1% in the entire visible spectrum. We experimentally and numerically prove that percolated nanocomposites with an overall thickness of 20 nm can provide anti-reflectivity up to near infrared (NIR). The ARC bandwidth can be shifted more than 500 nm and broadened to cover even the NIR wavelength by changing the volume filling fraction of the gold clusters. The angular sensitivity of thin ultrathin antireflective coating is negligible up to 60°. The present ARC could find applications in thermo-photovoltaics and bolometers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...