Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3529, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864097

RESUMO

Metastatic tumor is initiated by metastatic seeds (cancer stem cells "CSCs") in a controlled redox microenvironment. Hence, an effective therapy that disrupts redox balance with eliminating CSCs is critical. Diethyldithiocarbamate (DE) is potent inhibitor of radical detoxifying enzyme (aldehyde dehydrogenase "ALDH"1A) causing effective eradication of CSCs. This DE effect was augmented and more selective by its nanoformulating with green synthesized copper oxide (Cu4O3) nanoparticles (NPs) and zinc oxide NPs, forming novel nanocomplexes of CD NPs and ZD NPs, respectively. These nanocomplexes exhibited the highest apoptotic, anti-migration, and ALDH1A inhibition potentials in M.D. Anderson-metastatic breast (MDA-MB) 231 cells. Importantly, these nanocomplexes revealed more selective oxidant activity than fluorouracil by elevating reactive oxygen species with depleting glutathione in only tumor tissues (mammary and liver) using mammary tumor liver metastasis animal model. Due to higher tumoral uptake and stronger oxidant activity of CD NPs than ZD NPs, CD NPs had more potential to induce apoptosis, suppress hypoxia-inducing factor gene, and eliminate CD44+CSCs with downregulating their stemness, chemoresistance, and metastatic genes and diminishing hepatic tumor marker (α-fetoprotein). These potentials interpreted the highest tumor size reduction with complete eradicating tumor metastasis to liver in CD NPs. Consequently, CD nanocomplex revealed the highest therapeutic potential representing a safe and promising nanomedicine against the metastatic stage of breast cancer.


Assuntos
Neoplasias Hepáticas , Neoplasias Mamárias Animais , Óxido de Zinco , Animais , Feminino , Humanos , Aldeído Desidrogenase , Ditiocarb/farmacologia , Hipóxia Fetal , Fluoruracila , Oxidantes , Microambiente Tumoral , Óxido de Zinco/farmacologia
2.
Int J Pharm ; 627: 122208, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36122615

RESUMO

Mortality rate of metastatic breast cancer is linked to cancer stem cells (CSCs)' aggressive features (chemoresistance to apoptosis and redox imbalance). Therefore, unique dual therapeutic strategy compacts CSCs with inducing oxidative stress-mediated nonapoptosis (ferroptosis), confers effective malignant tumor eradication. Diethyldithiocarbamate (DDC) is a potent inhibitor of CSC aldehyde dehydrogenase and lowers glutathione (GSH) which aggravate iron-dependent ferroptosis. Herein, nanoformulations of DDC with green chemically synthesized ferrous oxide nanoparticles (FeO NPs) and ferric oxide (Fe2O3 NPs) were prepared. Due to nanoparticle characters and synergistic effect between iron oxide NPs and DDC, nanocomplexes (DFeO NPs and DFe2O3 NPs, respectively) exhibited the strongest anti-metastatic cancer potency in vitro. Because of corresponding iron oxide nature, DFeO NPs demonstrated better therapeutic efficacy than DFe4O3 NPs, in mammary tumor liver metastasis-bearing mice, in terms of tumor size, histological analysis, immunostaining % of ki-67+ and caspase 3+, and gene expression of p53 and BCl2. The potent anti-tumor effect of DFeO nanocomplex is attributed to the maximum elevation of reactive oxygen species and lipid peroxidation (ferroptosis hall marker) with severe depletion of GSH and Nrf2 selectively in both tumor tissues, causing CSC eradication with halting metastatic activity. The latters were confirmed by lowering CD44+ % and gene expression of HIF-α, ß-catenin, Notch, ABCG2-mediated chemoresistance, and MMP9 with diminishing liver tumor marker. Moreover, this nanocomplex did not cause any abnormal alterations in histological and biochemical parameters, compared to healthy group. Therefore, the selective apoptotic and ferroptotic with anti-CSC effects of DFeO NPs open new safe avenue for metastatic tumor therapy.


Assuntos
Ditiocarb , Nanopartículas , Camundongos , Animais , Ditiocarb/farmacologia , Ditiocarb/química , Caspase 3/metabolismo , Espécies Reativas de Oxigênio/metabolismo , beta Catenina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Supressora de Tumor p53 , Antígeno Ki-67/metabolismo , Nanopartículas/química , Proteínas Proto-Oncogênicas c-bcl-2 , Glutationa/metabolismo , Aldeído Desidrogenase/metabolismo , Ferro , Nanopartículas Magnéticas de Óxido de Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...