Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 8409, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225739

RESUMO

This paper proposes a flexible, frequency-reconfigurable monopole antenna design with frequency selective surface (FSS) for Internet of Things (IoT) applications. The proposed antenna operates at three of the IoT frequency bands. This antenna is a coplanar waveguide (CPW)-fed monopole with two balanced arms printed on a thin ROGERS 3003 flexible substrate. The length of the right-hand arm of the antenna is used to achieve frequency reconfiguration by using PIN diodes. Three frequency modes of operation have been obtained; the 2.4 GHz frequency band with the right-hand arm is fully truncated, the 3.5 GHz frequency band with the two arms is completely maintained, and the 4 GHz frequency band with the right-hand arm is partially truncated. To improve the gain of the antenna, a simple FSS surface is designed to be placed under the antenna at a distance of 15 mm. The FSS operates efficiently from 2 to 4.5 GHz and has improved the gain of the antenna. A maximum gain of 6.5 dBi, 7.52 dBi, and 7.91 dBi has been achieved at the three frequency bands respectively. The behavior of the flexible antenna has been evaluated in both the flat and bent states, and stable performance has been observed in both cases.

2.
Micromachines (Basel) ; 14(1)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36677220

RESUMO

A reconfigurable wideband monopole antenna is introduced in this paper for cognitive radio and wireless applications. The reconfigurability was achieved by four varactor diodes embedded in the band pass filter (BPF) structure which was integrated with the suggested antenna through its feed line. The simulated impedance characteristics coped with the measured ones after fabricating the suggested model with/without the reconfigurable BPF. Furthermore, the model achieved the desired radiation characteristics in terms of radiation pattern with acceptable gain values at the selected frequencies within the achieved frequency range (1.3-3 GHz).

3.
Sensors (Basel) ; 22(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35808180

RESUMO

Product warranty seals or stickers are criteria for after-sale warranty services. The unauthorized removal or modification of a seal will void the warranty. So far, there is no detection method to confirm the warranty, other than the visual inspection of the deformation of the seal. Hence, a system to detect, read, and record the 'warranty' seal deformation is presented in this paper. A flexible piezoelectric sensor was used to determine the mechanical impacts of the seal. Three major impacts are discussed and evaluated in this paper-partial removal, complete removal, and drop deformations of the seal. These impacts were compared with the ambient responses to distinguish the conditions. All three impact cases show distinct characteristics in terms of sensor values, pulses, and pulse widths. For partial removal and complete removal of the seal, both cases exhibited maximum sensor values but differed in pulse and pulse width. A partially removed seal experienced the maximum number of pulses while complete removal experienced the maximum pulse width. However, if the seal experienced a drop impact, it showed lower sensor values, with the lowest pulse and pulse width. Hence, an algorithm was applied to generalize the conditions and decisions of warranty violations.

4.
Polymers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631872

RESUMO

In this paper, we present a textile multiple-input−multiple-output (MIMO) antenna designed with a metamaterial inspired reactive impedance surface (RIS) and electromagnetic bandgap (EBG) using viscose-wool felt. Rectangular RIS was used as a reflector to improve the antenna gain and bandwidth to address well known crucial challenges­maintaining gain while reducing mutual coupling in MIMO antennas. The RIS unit cell was designed to achieve inductive impedance at the center frequency of 2.45 GHz with a reflection phase of 177.6°. The improved bandwidth of 170 MHz was achieved by using a square shaped RIS under a rectangular patch antenna, and this also helped to attain an additional gain of 1.29 dBi. When the antenna was implemented as MIMO, a split ring resonator backed by strip line type EBG was used to minimize the mutual coupling between the antenna elements. The EBG offered a sufficient band gap region from 2.37 GHz to 2.63 GHz. Prior to fabrication, bending analysis was carried out to validate the performance of the reflection coefficient (S11) and transmission coefficient (S21). The results of the analysis show that bending conditions have very little impact on antenna performance in terms of S-parameters. The effect of strip line supported SRR-based EBG was further analyzed with the fabricated prototype to clearly show the advantage of the designed EBG towards the mutual coupling reduction. The designed MIMO-RIS-EBG array-based antenna revealed an S21 reduction of −9.8 dB at 2.45 GHz frequency with overall S21 of <−40 dB. The results also indicated that the proposed SRR-EBG minimized the mutual coupling while keeping the mean effective gain (MEG) variations of <3 dB at the desired operating band. The specific absorption rate (SAR) analysis showed that the proposed design is not harmful to human body as the values are less than the regulated SAR. Overall, the findings in this study indicate the potential of the proposed MIMO antenna for microwave applications in a wearable format.

5.
Polymers (Basel) ; 13(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34451357

RESUMO

In this paper, a compact textile ultrawideband (UWB) planar monopole antenna loaded with a metamaterial unit cell array (MTMUCA) structure with epsilon-negative (ENG) and near-zero refractive index (NZRI) properties is proposed. The proposed MTMUCA was constructed based on a combination of a rectangular- and a nonagonal-shaped unit cell. The size of the antenna was 0.825 λ0 × 0.75 λ0 × 0.075 λ0, whereas each MTMUCA was sized at 0.312 λ0 × 0.312 λ0, with respect to a free space wavelength of 7.5 GHz. The antenna was fabricated using viscose-wool felt due to its strong metal-polymer adhesion. A naturally available polymer, wool, and a human-made polymer, viscose, that was derived from regenerated cellulose fiber were used in the manufacturing of the adopted viscose-wool felt. The MTMUCA exhibits the characteristics of ENG, with a bandwidth (BW) of 11.68 GHz and an NZRI BW of 8.5 GHz. The MTMUCA was incorporated on the planar monopole to behave as a shunt LC resonator, and its working principles were described using an equivalent circuit. The results indicate a 10 dB impedance fractional bandwidth of 142% (from 2.55 to 15 GHz) in simulations, and 138.84% (from 2.63 to 14.57 GHz) in measurements obtained by the textile UWB antenna. A peak realized gain of 4.84 dBi and 4.4 dBi was achieved in simulations and measurements, respectively. A satisfactory agreement between simulations and experiments was achieved, indicating the potential of the proposed negative index metamaterial-based antenna for microwave applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...