Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (208)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38912820

RESUMO

High throughput image-based phenotyping is a powerful tool to non-invasively determine the development and performance of plants under specific conditions over time. By using multiple imaging sensors, many traits of interest can be assessed, including plant biomass, photosynthetic efficiency, canopy temperature, and leaf reflectance indices. Plants are frequently exposed to multiple stresses under field conditions where severe heat waves, flooding, and drought events seriously threaten crop productivity. When stresses coincide, resulting effects on plants can be distinct due to synergistic or antagonistic interactions. To elucidate how potato plants respond to single and combined stresses that resemble naturally occurring stress scenarios, five different treatments were imposed on a selected potato cultivar (Solanum tuberosum L., cv. Lady Rosetta) at the onset of tuberization, i.e. control, drought, heat, waterlogging, and combinations of heat, drought, and waterlogging stresses. Our analysis shows that waterlogging stress had the most detrimental effect on plant performance, leading to fast and drastic physiological responses related to stomatal closure, including a reduction in the quantum yield and efficiency of photosystem II and an increase in canopy temperature and water index. Under heat and combined stress treatments, the relative growth rate was reduced in the early phase of stress. Under drought and combined stresses, plant volume and photosynthetic performance dropped with an increased temperature and stomata closure in the late phase of stress. The combination of optimized stress treatment under defined environmental conditions together with selected phenotyping protocols allowed to reveal the dynamics of morphological and physiological responses to single and combined stresses. Here, a useful tool is presented for plant researchers looking to identify plant traits indicative of resilience to several climate change-related stresses.


Assuntos
Fenótipo , Solanum tuberosum , Estresse Fisiológico , Solanum tuberosum/fisiologia , Estresse Fisiológico/fisiologia , Secas , Ensaios de Triagem em Larga Escala/métodos
2.
Plant Physiol Biochem ; 210: 108595, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581807

RESUMO

Global climate change increases the likelihood of co-occurrence of hot and dry spells with increased intensity, frequency, and duration. Studying the impact of the two stresses provide a better understanding of tolerance mechanisms in wheat, and our study was focused on revealing plant stress responses to different severities of combined stress at two phenophases in old and modern wheat genotypes. During the stem elongation and anthesis stages, plants were exposed to four treatments: control, deficit irrigation, combined heat, and deficit irrigation at 31 °C (HD31) and 37 °C (HD37). The modern genotypes were less affected by deficit irrigation at stem elongation as they maintained higher photosynthesis, stomatal conductance, and leaf cooling than old genotypes. When the HD37 stress was imposed during anthesis, the modern genotypes exhibited superior performance compared to the old, which was due to their higher photosynthetic rates resulting from improved biochemical regulation and a higher chlorophyll content. The plant responses varied during two phenophases under the combined stress exposure. Genotypes subjected to HD37 stress during stem elongation, photosynthesis was mainly controlled by stomatal regulation, whereas at anthesis it was predominated by biochemical regulation. These findings contribute to a deeper comprehension of plant tolerance mechanisms in response to different intensities of co-occurring hot and dry weather conditions.


Assuntos
Genótipo , Temperatura Alta , Fotossíntese , Triticum , Triticum/genética , Triticum/fisiologia , Desidratação , Clorofila/metabolismo , Água/metabolismo , Estômatos de Plantas/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estresse Fisiológico/genética
3.
Plants (Basel) ; 13(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38592830

RESUMO

Plants' response to single environmental changes can be highly distinct from the response to multiple changes. The effects of a single environmental factor on wheat growth have been well documented. However, the interactive influences of multiple factors on different wheat genotypes need further investigation. Here, treatments of three important growth factors, namely water regime, temperature, and CO2 concentration ([CO2]), were applied to compare the response of two wheat genotypes with different heat sensitivities. The temperature response curves showed that both genotypes showed more variations at elevated [CO2] (e[CO2]) than ambient [CO2] (a[CO2]) when the plants were treated under different water regimes and temperatures. This corresponded to the results of water use efficiency at the leaf level. At e[CO2], heat-tolerant 'Gladius' showed a higher net photosynthetic rate (Pn), while heat-susceptible 'Paragon' had a lower Pn at reduced water, as compared with full water availability. The temperature optimum for photosynthesis in wheat was increased when the growth temperature was high, while the leaf carbon/nitrogen was increased via a reduced water regime. Generally, water regime, temperature and [CO2] have significant interactive effects on both wheat genotypes. Two wheat genotypes showed different physiological responses to different combinations of environmental factors. Our investigation concerning the interactions of multi-environmental factors on wheat will benefit the future wheat climate-response study.

4.
Plant Physiol Biochem ; 208: 108458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38408395

RESUMO

This study investigated the effect of light intensity and signaling on the regulation of far-red (FR)-induced alteration in photosynthesis. The low (LL: 440 µmol m-2 s-1) and high (HL: 1135 µmol m-2 s-1) intensity of white light with or without FR (LLFR: 545 µmol m-2 s-1 including 115 µmol m-2 s-1; HLFR: 1254 µmol m-2 s-1 + 140 µmol m-2 s-1) was applied on the tomato cultivar (Solanum Lycopersicon cv. Moneymaker) and mutants of phytochrome A (phyA) and phytochrome B (phyB1, and phyB2). Both light intensity and FR affected plant morphological traits, leaf biomass, and flowering time. Irrespective of genotype, flowering was delayed by LLFR and accelerated by HLFR compared to the corresponding light intensity without FR. In LLFR, a reduced energy flux through the electron transfer chain along with a reduced energy dissipation per reaction center improved the maximum quantum yield of PSII, irrespective of genotype. HLFR increased net photosynthesis and gas exchange properties in a genotype-dependent manner. FR-dependent regulation of hormones was affected by light signaling. It appeared that PHYB affected the levels of abscisic acid and salicylic acid while PHYA took part in the regulation of CK in FR-exposed plants. Overall, light intensity and signaling of FR influenced plants' photosynthesis and growth by altering electron transport, gas exchange, and changes in the level of endogenous hormones.


Assuntos
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genética , Arabidopsis/metabolismo , Fitocromo B/genética , Fitocromo A/genética , Fitocromo A/metabolismo , Fotossíntese , Hormônios
5.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292978

RESUMO

The frequency of waterlogging episodes has increased due to unpredictable and intense rainfalls. However, less is known about waterlogging memory and its interaction with other climate change events, such as elevated CO2 concentration (e[CO2]). This study investigated the combined effects of e[CO2] and two rounds of waterlogging stress on the growth of cultivated tomato (Solanum lycopersicum) and wild tomato (S. pimpinellifolium). The aim is to elucidate the interaction between genotypes and environmental factors and thereby to improve crop resilience to climate change. We found that two rounds of treatments appeared to induce different acclimation strategies of the two tomato genotypes. S. pimpinellifolium responded more negatively to the first-time waterlogging than S. lycopersicum, as indicated by decreased photosynthesis and biomass loss. Nevertheless, the two genotypes respond similarly when waterlogging stress recurred, showing that they could maintain a higher leaf photosynthesis compared to single stress, especially for the wild genotype. This showed that waterlogging priming played a positive role in stress memory in both tomato genotypes. Multivariate analysis showed that waterlogging played a dominant role when combined with [CO2] for both the cultivated and wild tomato genotypes. This work will benefit agricultural production strategies by pinpointing the positive effects of e[CO2] and waterlogging memory.


Assuntos
Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Dióxido de Carbono , Solanum/genética , Fotossíntese , Análise Multivariada
6.
Front Plant Sci ; 13: 824476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35330869

RESUMO

Heat and drought events often occur concurrently as a consequence of climate change and have a severe impact on crop growth and yield. Besides, the accumulative increase in the atmospheric CO2 level is expected to be doubled by the end of this century. It is essential to understand the consequences of climate change combined with the CO2 levels on relevant crops such as wheat. This study evaluated the physiology and metabolite changes and grain yield in heat-sensitive (SF29) and heat-tolerant (LM20) wheat genotypes under individual heat stress or combined with drought applied during anthesis at ambient (aCO2) and elevated CO2 (eCO2) levels. Both genotypes enhanced similarly the WUE under combined stresses at eCO2. However, this increase was due to different stress responses, whereas eCO2 improved the tolerance in heat-sensitive SF29 by enhancing the gas exchange parameters, and the accumulation of compatible solutes included glucose, fructose, ß-alanine, and GABA to keep water balance; the heat-tolerant LM20 improved the accumulation of phosphate and sulfate and reduced the lysine metabolism and other metabolites including N-acetylornithine. These changes did not help the plants to improve the final yield under combined stresses at eCO2. Under non-stress conditions, eCO2 improved the yield of both genotypes. However, the response differed among genotypes, most probably as a consequence of the eCO2-induced changes in glucose and fructose at anthesis. Whereas the less-productive genotype LM20 reduced the glucose and fructose and increased the grain dimension as the effect of the eCO2 application, the most productive genotype SF29 increased the two carbohydrate contents and ended with higher weight in the spikes. Altogether, these findings showed that the eCO2 improves the tolerance to combined heat and drought stress but not the yield in spring wheat under stress conditions through different mechanisms. However, under non-stress conditions, it could improve mainly the yield to the less-productive genotypes. Altogether, the results demonstrated that more studies focused on the combination of abiotic stress are needed to understand better the spring wheat responses that help the identification of genotypes more resilient and productive under these conditions for future climate conditions.

7.
Plant Physiol Biochem ; 168: 202-210, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649023

RESUMO

We hypothesized that elevated [CO2] only increases sorghum photosynthesis under low nitrogen availability and evaluated whether cultivars BRS373 (grain), BRS511 (saccharine) and BRS655 (forage) differ in their sensitivity to nitrogen and [CO2]. Plants were grown in growth chambers where air [CO2] was 400 (a[CO2]) or 800 (e[CO2]) µmol CO2 mol-1 and supplied with nutrient solution containing 211 (HN) or 48 (LN) ppm N for 45 days. Photosynthetic traits were measured in fully expanded leaves as well as leaf nitrogen and biomass accumulation. e[CO2] increased the sensitivity of photosynthesis to LN, with all sorghum cultivars having lower maximum Rubisco carboxylation rate, effective quantum efficiency of PSII and stomatal conductance at LN than at HN. As compared to HN, LN caused lower photosynthesis of BRS373 at a[CO2] and lower maximum PEPC carboxylation rate at e[CO2]. Actually, the metabolic limitation of photosynthesis by LN (Lm) was high in BRS373 at a[CO2] and slightly reduced at e[CO2]. On the other hand, Lm was increased in BRS511 and BRS655 at e[CO2]. Based on photosynthesis, the grain cultivar BRS373 was the most sensitive to LN. Although the number of leaves and of tillers and the leaf area were lower at LN than at HN for BRS373 and BRS655 after 45 days of growth, shoot biomass was not significantly affected. We found significant variation in photosynthetic responses to LN and e[CO2] among sorghum cultivars, likely associated with different patterns of nitrogen and carbon partitioning. Such findings must be considered when predicting crop performance in a changing environment.


Assuntos
Nitrogênio , Sorghum , Dióxido de Carbono , Genótipo , Fotossíntese , Folhas de Planta
8.
Plant Physiol Biochem ; 162: 301-314, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33714145

RESUMO

Abiotic stress due to climate change with continuous rise of atmospheric CO2 concentration is predicted to cause severe changes to crop productivity. Thus, research into wheat cultivars, capable of maintaining yield under limiting conditions is necessary. The aim of this study was to investigate the physiological responses of spring wheat to individual and combined drought- and heat events and their interaction with CO2 concentration. Two heat sensitive (LM19, KU10) and two heat tolerant (LM62, GN5) genotypes were selected and grown under ambient (400 ppm, aCO2) and elevated (800 ppm, eCO2) CO2 concentrations. At the tillering stage, the wheat plants were subjected to different treatments: control, progressive drought, heat and combined drought and heat stress. Our results showed that eCO2 mitigated the negative impact of the moderate stress in all genotypes. However, no distinctive responses were observed in some of the measured parameters between heat sensitive and tolerant genotypes. All genotypes grown at eCO2 had significantly higher net photosynthetic rates and maintained maximum quantum efficiency of PSII photochemistry under heat and combined stress compared to aCO2. Under heat and combined stress, the chlorophyll a:b ratios decreased only in heat tolerant genotypes at eCO2 compared to the control. Furthermore, the heat tolerant genotypes grown at eCO2 showed an increased glucose and fructose contents and a decreased sucrose content under combined stress compared to aCO2. These findings provide new insights into the underlying mechanisms of different genotypic responses to combined abiotic stresses at eCO2 that differ from the response to individual stresses.


Assuntos
Secas , Triticum , Dióxido de Carbono , Clorofila A , Genótipo , Resposta ao Choque Térmico , Triticum/genética
9.
Hortic Res ; 6: 104, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645959

RESUMO

Elevated CO2 concentration in the air (e[CO2]) decreases stomatal density (SD) and stomatal conductance (g s) where abscisic acid (ABA) may play a role, yet the underlying mechanism remains largely elusive. We investigated the effects of e[CO2] (800 ppm) on leaf gas exchange and water relations of two tomato (Solanum lycopersicum) genotypes, Ailsa Craig (WT) and its ABA-deficient mutant (flacca). Compared to plants grown at ambient CO2 (400 ppm), e[CO2] stimulated photosynthetic rate in both genotypes, while depressed the g s only in WT. SD showed a similar response to e[CO2] as g s, although the change was not significant. e[CO2] increased leaf and xylem ABA concentrations and xylem sap pH, where the increases were larger in WT than in flacca. Although leaf water potential was unaffected by CO2 growth environment, e[CO2] lowered osmotic potential, hence tended to increase turgor pressure particularly for WT. e[CO2] reduced hydraulic conductance of leaf and root in WT but not in flacca, which was associated with downregulation of gene expression of aquaporins. It is concluded that ABA-mediated regulation of g s, SD, and gene expression of aquaporins coordinates the whole-plant hydraulics of tomato grown at different CO2 environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...