Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611747

RESUMO

In this study, the effect of various immobilization methods on the biochemical properties of phospholipase C (PLC) from Bacillus cereus obtained from the oily soil located in Sfax, Tunisia, was described. Different supports were checked: octyl sepharose, glyoxyl agarose in the presence of N-acetyl cysteine, and Q-sepharose. In the immobilization by hydrophobic adsorption, a hyperactivation of the PLCBc was obtained with a fold of around 2 times. The recovery activity after immobilization on Q-sepharose and glyoxyl agarose in the presence of N-acetyl cysteine was 80% and 58%, respectively. Furthermore, the biochemical characterization showed an important improvement in the three immobilized enzymes. The performance of the various immobilized PLCBc was compared with the soluble enzyme. The derivatives acquired using Q-sepharose, octyl sepharose, and glyoxyl agarose were stable at 50 °C, 60 °C, and 70 °C. Nevertheless, the three derivatives were more stable in a large range of pH than the soluble enzyme. The three derivatives and the free enzyme were stable in 50% (v/v) ethanol, hexane, methanol, and acetone. The glyoxyl agarose derivative showed high long-term storage at 4 °C, with an activity of 60% after 19 days. These results suggest the sustainable biotechnological application of the developed immobilized enzyme.


Assuntos
Acetilcisteína , Bacillus cereus , Glioxilatos , Sefarose , Enzimas Imobilizadas , Fosfolipases Tipo C
2.
Prep Biochem Biotechnol ; 53(10): 1165-1175, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36794326

RESUMO

This work deals with the optimization of an extracellular phospholipase C production by Bacillus cereus (PLCBc) using Response Surface Methodology (RMS) and Box-Behnken design. In fact, after optimization, a maximum phospholipase activity (51 U/ml) was obtained after 6 h of cultivation on tryptone (10 g/L), yeast extract (10 g/L), NaCl (8.125 g/L), pH 7.5 with initial OD (0.15). The PLCBc activity, esteemed by the model (51 U) was very approximate to activity gutted experimentally (50 U). The PLCBc can be considered as thermoactive phospholipase since it showed a maximal activity of 50 U/mL at 60 °C using egg yolk or egg phosphatidylcholine (PC) as substrate. In addition, the enzyme was active at pH 7 and is stable after incubation at 55 °C for 30 min. The application of B. cereus phospholipase C in soybean oil degumming was investigated. Our results showed that when using enzymatic degumming, the residual phosphorus decrease more than with water degumming, indeed, it passes from 718 ppm in soybean crude oil to 100 ppm and 52 ppm by degumming using water and enzymatic process, respectively. The diacylgycerol (DAG) yield showed an increase of 1.2% with enzymatic degumming compared to soybean crude oil. This makes our enzyme a potential candidate for food industrial applications such as enzymatic degumming of vegetable oils.


Assuntos
Petróleo , Óleo de Soja , Fosfolipases Tipo C , Bacillus cereus , Fosfolipases , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...