Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444950

RESUMO

In the pursuit of achieving zero emissions, exploring the concept of recycling metal waste from industries and workshops (i.e., waste-free) is essential. This is because metal recycling not only helps conserve natural resources but also requires less energy as compared to the production of new products from virgin raw materials. The use of metal scrap in rapid tooling (RT) for injection molding is an interesting and viable approach. Recycling methods enable the recovery of valuable metal powders from various sources, such as electronic, industrial, and automobile scrap. Mechanical alloying is a potential opportunity for sustainable powder production as it has the capability to convert various starting materials with different initial sizes into powder particles through the ball milling process. Nevertheless, parameter factors, such as the type of ball milling, ball-to-powder ratio (BPR), rotation speed, grinding period, size and shape of the milling media, and process control agent (PCA), can influence the quality and characteristics of the metal powders produced. Despite potential drawbacks and environmental impacts, this process can still be a valuable method for recycling metals into powders. Further research is required to optimize the process. Furthermore, ball milling has been widely used in various industries, including recycling and metal mold production, to improve product properties in an environmentally friendly way. This review found that ball milling is the best tool for reducing the particle size of recycled metal chips and creating new metal powders to enhance mechanical properties and novelty for mold additive manufacturing (MAM) applications. Therefore, it is necessary to conduct further research on various parameters associated with ball milling to optimize the process of converting recycled copper chips into powder. This research will assist in attaining the highest level of efficiency and effectiveness in particle size reduction and powder quality. Lastly, this review also presents potential avenues for future research by exploring the application of RT in the ball milling technique.

2.
Materials (Basel) ; 16(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36837352

RESUMO

The investigation of mould inserts in the injection moulding process using metal epoxy composite (MEC) with pure metal filler particles is gaining popularity among researchers. Therefore, to attain zero emissions, the idea of recycling metal waste from industries and workshops must be investigated (waste free) because metal recycling conserves natural resources while requiring less energy to manufacture new products than virgin raw materials would. The utilisation of metal scrap for rapid tooling (RT) in the injection moulding industry is a fascinating and potentially viable approach. On the other hand, epoxy that can endure high temperatures (>220 °C) is challenging to find and expensive. Meanwhile, industrial scrap from coal-fired power plants can be a precursor to creating geopolymer materials with desired physical and mechanical qualities for RT applications. One intriguing attribute of geopolymer is its ability to endure temperatures up to 1000 °C. Nonetheless, geopolymer has a higher compressive strength of 60-80 MPa (8700-11,600 psi) than epoxy (68.95 MPa) (10,000 psi). Aside from its low cost, geopolymer offers superior resilience to harsh environments and high compressive and flexural strength. This research aims to investigate the possibility of generating a new sustainable material by integrating several types of metals in green geopolymer metal composite (GGMC) mould inserts for RT in the injection moulding process. It is necessary to examine and investigate the optimal formulation of GGMC as mould inserts for RT in the injection moulding process. With less expensive and more ecologically friendly components, the GGMC is expected to be a superior choice as a mould insert for RT. This research substantially impacts environmental preservation, cost reduction, and maintaining and sustaining the metal waste management system. As a result of the lower cost of recycled metals, sectors such as mould-making and machining will profit the most.

3.
Materials (Basel) ; 15(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35629751

RESUMO

Rapid tooling (RT) and additive manufacturing (AM) are currently being used in several parts of industry, particularly in the development of new products. The demand for timely deliveries of low-cost products in a variety of geometrical patterns is continuing to increase year by year. Increased demand for low-cost materials and tooling, including RT, is driving the demand for plastic and rubber products, along with engineering and product manufacturers. The development of AM and RT technologies has led to significant improvements in the technologies, especially in testing performance for newly developed products prior to the fabrication of hard tooling and low-volume production. On the other hand, the rapid heating cycle molding (RHCM) injection method can be implemented to overcome product surface defects generated by conventional injection molding (CIM), since the surface gloss of the parts is significantly improved, and surface marks such as flow marks and weld marks are eliminated. The most important RHCM technique is rapid heating and cooling of the cavity surface, which somewhat improves part quality while also maximizing production efficiencies. RT is not just about making molds quickly; it also improves molding productivity. Therefore, as RT can also be used to produce products with low-volume production, there is a good potential to explore RHCM in RT. This paper reviews the implementation of RHCM in the molding industry, which has been well established and undergone improvement on the basis of different heating technologies. Lastly, this review also introduces future research opportunities regarding the potential of RT in the RHCM technique.

4.
Materials (Basel) ; 14(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804036

RESUMO

Many studies have been done using recycled waste materials to minimise environmental problems. It is a great opportunity to explore mechanical recycling and the use of recycled and virgin blend as a material to produce new products with minimum defects. In this study, appropriate processing parameters were considered to mould the front panel housing part using R0% (virgin), R30% (30% virgin: 70% recycled), R40% (40% virgin: 60% recycled) and R50% (50% virgin: 50% recycled) of Polycarbonate (PC). The manufacturing ability and quality during preliminary stage can be predicted through simulation analysis using Autodesk Moldflow Insight 2012 software. The recommended processing parameters and values of warpage in x and y directions can also be obtained using this software. No value of warpage was obtained from simulation studies for x direction on the front panel housing. Therefore, this study only focused on reducing the warpage in the y direction. Response Surface Methodology (RSM) and Genetic Algorithm (GA) optimisation methods were used to find the optimal processing parameters. As the results, the optimal ratio of recycled PC material was found to be R30%, followed by R40% and R50% materials using RSM and GA methods as compared to the average value of warpage on the moulded part using R0%. The most influential processing parameter that contributed to warpage defect was packing pressure for all materials used in this study.

5.
Materials (Basel) ; 14(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916414

RESUMO

Achieving good quality of products from plastic injection moulding processes is very challenging, since the process comprises many affecting parameters. Common defects such as warpage are hard to avoid, and the defective parts will eventually go to waste, leading to unnecessary costs to the manufacturer. The use of recycled material from postindustrial waste has been studied by a few researchers. However, the application of an optimisation method by which to optimise processing parameters to mould parts using recycled materials remains lacking. In this study, Response Surface Methodology (RSM) and Particle Swarm Optimisation (PSO) methods were conducted on thick plate parts moulded using virgin and recycled low-density polyethylene (LDPE) materials (100:0, 70:30, 60:40 and 50:50; virgin to recycle material ratios) to find the optimal input parameters for each of the material ratios. Shrinkage in the x and y directions increased in correlation with the recycled ratio, compared to virgin material. Meanwhile, the tensile strength of the thick plate part continued to decrease when the recycled ratio increased. R30 (70:30) had the optimum shrinkage in the x direction with respect to R0 (100:0) material where the shrinkage increased by 24.49% (RSM) and 33.20% (PSO). On the other hand, the shrinkage in the y direction for R30 material increased by 4.48% (RSM) and decreased by 2.67% (PSO), while the tensile strength of R30 (70:30) material decreased by 0.51% (RSM) and 2.68% (PSO) as compared to R0 (100:0) material. Validation tests indicated that the optimal setting of processing parameter suggested by PSO and RSM for R0 (100:0), R30 (70:30), R40 (60:40) and R50 (50:50) was less than 10%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...