Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652582

RESUMO

In this paper, we demonstrate the feasibility of realization of transparent gas sensors based on carbon nanotubes (CNTs). Both sensing layer and electrodes consist of CNTs deposited by spray deposition. The transparent sensor-with a transmittance higher than 60% in both sensing layer and electrodes-is characterized towards NH3 and CO2 and compared with a reference sensor with the same active layer but evaporated Au electrodes. In particular, the sensitivity towards NH3 is virtually identical for both reference and transparent sensors, whereas the transparent device exhibits higher sensitivity to CO2 than the reference electrode. The effect of the spacing among consecutive electrodes is also studied, demonstrating that a wider spacing in fully CNT based sensors results in a higher sensitivity because of the higher sensing resistance, whereas this effect was not observed in gold electrodes, as their resistance can be neglected with respect to the resistance of the CNT sensing layer. Overall, the transparent sensors show performance comparable-if not superior-to the traditionally realized ones, opening the way for seamlessly integrated sensors, which do not compromise on quality.

2.
ACS Appl Mater Interfaces ; 8(4): 2644-51, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26754413

RESUMO

The fabrication of organic electronic devices involving complex stacks of solution-processable functional materials has proven challenging. Significant material intermixing often occurs as a result of cross-solubility and postdeposition treatments, rendering the realization of even the simplest bilayer architectures rather cumbersome. In this study we investigate the feasibility of a dry transfer printing process for producing abrupt bilayer organic photodiodes (OPDs) and the effect of thermal annealing on the integrity of the bilayer. The process involves the transfer of readily deposited thin films of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) using a polydimethylsiloxane (PDMS) stamp. Fabricated structures are characterized by means of cross-sectional scanning electron microscopy (SEM), UV/vis absorption spectroscopy, and time-of-flight secondary ion mass spectrometry (TOF-SIMS). Joint consideration of all results unveils abrupt interfaces with no thermal treatment applied and significant material intermixing for samples annealed above 100 °C. The role of the thermally assisted intermixing in determining the performance of complete devices is evaluated through the comparison of J-V characteristics and external quantum efficiencies (EQEs) of identical photodiodes subject to different annealing conditions. It is shown that the performance of such devices approaches the one of bulk heterojunction photodiodes upon thermal annealing at 140 °C for 5 min. Our results demonstrate that transfer printing is a reliable and simple process for the realization of functional multilayers, paving the way for organic electronic devices incorporating complex stacks. It further contributes to a fundamental understanding of material composition within photoactive layers by elucidating the process of thermally assisted intermixing.

3.
ACS Appl Mater Interfaces ; 6(13): 10593-601, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-24914700

RESUMO

In this study, we demonstrate the feasibility of TCO-free, fully sprayed organic photodiodes on flexible polyethylene terephthalate (PET) substrates. Transparent conducting films of single-wall carbon nanotubes are spray deposited from aqueous solutions. Low roughness is achieved, and films with sheet resistance values of 160 Ω/sq at 84% in transmittance are fabricated. Process issues related to the wetting of CNTs are then examined and solved, enabling successive spray depositions of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer and a blend of regioregular poly(3-hexylthiophene-2,5-diyl) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The active layer is then optimized, achieving a process yield above 90% and dark currents as low as 10(-4) mA/cm(2). An external quantum efficiency of 65% and high reproducibility in the performance of the devices are obtained. Finally, the impact of the characteristics of the transparent electrode (transmittance and sheet resistance) on the performances of the device are investigated and validated through a theoretical model and experimental data.

4.
Nanotechnology ; 25(5): 055208, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24407105

RESUMO

We report the fabrication of carbon nanotube (CNT) based gas sensors functionalized with different metallic nanoparticles (NPs) (Au, Pd, Ag) with exceptionally high responses towards four test gases (NH3, CO2, CO and ethanol). The CNT networks were fabricated through a low cost spray deposition process while the NPs were deposited by a thermal evaporation process. CNT based gas sensors functionalized with Au with a nominal thickness of 1.0 nm showed superior response towards NH3, CO and ethanol. The sensors' normalized responses reached 92%, 22% and 32% with concentrations of 100 ppm, 50 ppm and 100 ppm for NH3, CO and ethanol respectively. CNT based gas sensors functionalized with Pd with a nominal thickness of 1.5 nm showed the best performance with CO2. The normalized response reached 3%, 6%, 12% and 17% with concentrations of 500 ppm, 1000 ppm, 2500 ppm and 5000 ppm of CO2 respectively. We also investigated the morphological and optical changes that occur to the NPs upon thermal treatment. Functionalization of CNT films deposited on glass with Au and Ag showed surface plasmon resonance effects that are dependent on the nominal thickness of the functionalization layer.

5.
Opt Express ; 19 Suppl 1: A7-19, 2011 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21263715

RESUMO

Organic light-emitting diodes (OLEDs) usually exhibit a low light outcoupling efficiency because a large fraction of power is lost to surface plasmons (SPs) and waveguide modes. In this paper it is demonstrated that periodic grating structures with almost µm-scale can be used to extract SPs as well as waveguide modes and therefore enhance the outcoupling efficiency in light-emitting thin film structures. The gratings are fabricated by nanoimprint lithography using a commercially available diffraction grating as a mold which is pressed into a polymer resist. The outcoupling of SPs and waveguide modes is detected in fluorescent organic films adjacent to a thin metal layer in angular dependent photoluminescence measurements. Scattering up to 5th-order is observed and the extracted modes are identified by comparison to the SP and waveguide dispersion obtained from optical simulations. In order to demonstrate the low-cost, high quality and large area applicability of grating structures in optoelectronic devices, we also present SP extraction using a grating structure fabricated by a common DVD stamp.


Assuntos
Nanotecnologia/métodos , Ressonância de Plasmônio de Superfície/métodos , Algoritmos , Eletrônica , Corantes Fluorescentes/química , Luz , Luminescência , Microscopia de Força Atômica/métodos , Modelos Estatísticos , Óptica e Fotônica , Compostos Orgânicos/química , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...