Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 356: 120601, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518488

RESUMO

The substantial release of NH3 during composting leads to nitrogen (N) losses and poses environmental hazards. Additives can mitigate nitrogen loss by adsorbing NH3/NH4, adjusting pH, and enhancing nitrification, thereby improving compost quality. Herein, we assessed the effects of combining bacterial inoculants (BI) (1.5%) with tricalcium phosphate (CA) (2.5%) on N retention, organic N conversion, bacterial biomass, functional genes, network patterns, and enzyme activity during kitchen waste (KW) composting. Results revealed that adding of 1.5%/2.5% (BI + CA) significantly (p < 0.05) improved ecological parameters, including pH (7.82), electrical conductivity (3.49 mS/cm), and N retention during composting. The bacterial network properties of CA (265 node) and BI + CA (341 node) exhibited a substantial niche overlap compared to CK (210 node). Additionally, treatments increased organic N and total N (TN) content while reducing NH4+-N by 65.42% (CA) and 77.56% (BI + CA) compared to the control (33%). The treatments, particularly BI + CA, significantly (p < 0.05) increased amino acid N, hydrolyzable unknown N (HUN), and amide N, while amino sugar N decreased due to bacterial consumption. Network analysis revealed that the combination expanded the core bacterial nodes and edges involved in organic N transformation. Key genes facilitating nitrogen mediation included nitrate reductase (nasC and nirA), nitrogenase (nifK and nifD), and hydroxylamine oxidase (hao). The structural equation model suggested that combined application (CA) and microbial inoculants enhance enzyme activity and bacterial interactions during composting, thereby improving nitrogen conversion and increasing the nutrient content of compost products.


Assuntos
Inoculantes Agrícolas , Fosfatos de Cálcio , Compostagem , Solo/química , Esterco , Bactérias/genética , Nitrogênio/análise
2.
Ecotoxicol Environ Saf ; 267: 115669, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37944464

RESUMO

Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is one of the most destructive insect pests owned strong resistance to different insecticides. Indoxacarb as a novel oxadiazine insecticide becomes the main pesticide against S. litura. DIMBOA [2,4-dihydroxy-7-methoxy-2 H-1,4-benz-oxazin-3(4 H)-one] is involved in important chemical defense processes in corn plants. However, the insects' adaptation mechanism to insecticides when exposed to defensive allelochemicals in their host plants remains unclear. Here, we assessed multi-resistance, and resistance mechanisms based on S. litura life history traits. After 18 generations of selection, indoxacarb resistance was increased by 61.95-fold (Ind-Sel) and 86.06-fold (Dim-Sel) as compared to the Lab-Sus. Also, DIMBOA-pretreated larvae developed high resistance to beta-cypermethrin, chlorpyrifos, phoxim, chlorantraniliprole, and emamectin benzoate. Meanwhile, indoxacarb (LC50) was applied to detect its impact on thirty-eight detoxification-related genes expression. The transcripts of SlituCOE073, SlituCOE009, SlituCOE074, and SlituCOE111 as well as SlGSTs5, SlGSTu1, and SlGSTe13 were considerably raised in the Ind-Sel strain. Among the twenty-three P450s, CYP6AE68, CYP321B1, CYP6B50, CYP9A39, CYP4L10, and CYP4S9v1 transcripts denoted significantly higher levels in the Ind-Sel strain, suggesting that CarEs, GSTs and P450s genes may be engaged in indoxacarb resistance. These outcomes further highlighted the importance of detoxification enzymes for S. litura gene expression and their role in responses to insecticides and pest management approaches.


Assuntos
Inseticidas , Animais , Spodoptera/fisiologia , Inseticidas/farmacologia , Nicotiana/metabolismo , Benzoxazinas , Larva/metabolismo , Expressão Gênica , Resistência a Inseticidas/genética
3.
Bioresour Technol ; 367: 128241, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332871

RESUMO

Chicken manure is a source of antibiotic resistance genes (ARGs) and pathogenic microbes. Mikania micrantha Kunth (MM) is an invasive plant containing phytochemicals as antimicrobial agents. To explore its impacts on ARGs and pathogen-host interactions (PHIs), MM was added to composting mixtures. The findings indicated that compared with control (CK), MM significantly improved the phytochemical abundances, particularly stilbenoids and diarylheptanoids (4.87%), and ubiquinones (2.66%) in the treatment (T) compost. Besides, significant ARGs reduction was noted, where rpoB2, RbpA, FosB1, vatC, and vatB were removed from T compost. PHIs significantly declined in T compost, where the growth of Xanthomonas citri, Streptococcus pneumoniae, Fusarium graminearum, Vibrio cholerae, and Xanthomonas campestris were inhibited. Multiple variable analyses demonstrated that temperature and pH revealed a significant role in ARGs and PHIs decline. Accordingly, this study considerably recommends MM as a promising compost additive in terms of its antimicrobial potential toward pathogenic microbes and ARGs.


Assuntos
Compostagem , Mikania , Animais , Esterco/análise , Galinhas/genética , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Compostos Fitoquímicos
4.
Pestic Biochem Physiol ; 187: 105215, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127062

RESUMO

Herbivore-induced plant volatiles (HIPVs) have been associated with plant-plant-herbivorous-natural enemies communication and an enhanced response to the subsequent attack. Spodoptera litura is a serious cosmopolitan pest that has developed a high level of resistance to many insecticides. However, the underlying molecular and biochemical mechanism by which HIPV priming reduces S. litura larval sensitivity to insecticides remains largely unknown. This study was conducted to explore the potential of volatile from undamaged, or artificially damaged, or S. litura-damaged tomato plants on the susceptibility of S. litura to the insecticides beta-cypermethrin indoxacarb and chlorpyrifos. We found that larvae exposed to volatile from S. litura-damaged or artificially damaged tomato plants were significantly less susceptible to the three insecticides than those exposed to volatile from undamaged tomato plants. Elevated activities of detoxifying enzymes [cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and esterases (ESTs)], were expressed in S. litura larvae exposed to volatile from S. litura-damaged tomato plants than those exposed to volatile from undamaged tomato plants. Similarly, seven detoxification-related genes [GSTs (SlGSTe1, SlGSTo1, and SlGSTe3) and P450s (CYP6B48, CYP9A40, CYP321A7, and CYP321B1)] in the midgut and fat body of larvae were up-regulated under exposure to volatile from S. litura-damaged tomato plants. Increased volatile organic compounds emissions were detected in the headspace of tomato plants damaged by S. litura compared to the undamaged plants. Collectively, these findings suggest that HIPVs can considerably reduce caterpillar susceptibility to insecticides, possibly through induction-enhanced detoxification mechanisms, and provide valuable information for implementing an effective integrated pest management strategy.


Assuntos
Clorpirifos , Inseticidas , Solanum lycopersicum , Compostos Orgânicos Voláteis , Animais , Clorpirifos/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Esterases , Glutationa , Herbivoria , Inseticidas/toxicidade , Larva , Spodoptera , Transferases/farmacologia , Compostos Orgânicos Voláteis/farmacologia
5.
J Hazard Mater ; 424(Pt D): 127713, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34815123

RESUMO

To investigate the efficiency of psychrotrophic cellulose-degrading fungal strains (PCDFSs) and estrogen-degrading bacteria (EDBs) combined with humic acid (HA) on estrone (E1) and 17-ß-estradiol (E2) degradation, five compost groups (T, HA, EDB, PCDFS, and CK) were prepared and composted for 32 days at 11-14°C. The results indicated that inoculation increased the temperature to 62.2°C and promoted E1 degradation to the lowest level of 100.1 ng/kg, while E2 was undetected from day 16. Metagenomic analysis revealed that inoculation altered the microbial community structure by increasing the abundance of cellulose-degrading fungi, especially Meyerozyma (16.7%) (among PCDFSs), and of estrogen-degrading bacteria, particularly Microbacterium (13.4%) (involved in EDBs). Moreover, inoculation increased the levels (>0.500%) of Gene Ontology (GO) associated with estrogen degradation, like 3-ß-hydroxy-delta 5-steroid dehydrogenase and monooxygenase. Redundancy analysis demonstrated that temperature and Microbacterium were positively correlated with estrogen degradation. Structural equation model indicated that temperature and estrogen-degrading bacterial genera exhibited positive, significant (p < 0.001) and direct impacts on estrogen degradation. This is the first study to suggest that applying microbial inoculants and HA could accelerate estrogen degradation during composting in cold regions. The research outcomes offer a practical reference for managing compost safety, thereby decreasing its potential environmental and human health impacts.


Assuntos
Inoculantes Agrícolas , Compostagem , Animais , Estrogênios , Substâncias Húmicas , Esterco , Solo , Suínos , Temperatura
6.
Bioresour Technol ; 320(Pt B): 124402, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33212385

RESUMO

This study investigatedthe effects of applying psychrotrophic cellulose-degrading fungion cellulase production, fungal community structure, and maturity of pig manure (PM) compost under low-temperature conditions. Three psychrotrophic fungal strains were isolated and identified, and after the cold-active cellulase production conditions were optimized, they were inoculated into PM compost. While the control (CK) compost temperature failed to reachthe thermophilic stage, the inoculated compost temperature reached it within 3 days and was maintained for up to 17 days. Fungal inoculants improved fungal community structure at the end of composting, as suggested by network analysis. Principal component analysis revealed that the germination index (GI), total phosphorus (TP), total potassium (TK), and total nitrogen (TN) were the most influential physicochemical parameters affecting compost maturity. The results of the compost products reflected the suitability of the compost as a fertilizer. This study indicated that newly identified strains positively impacted composting at low temperatures.


Assuntos
Compostagem , Esterco , Animais , Nitrogênio/análise , Solo , Suínos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...