Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 263(Pt 2): 130389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403207

RESUMO

Curcumin, a bioactive compound derived from the rhizome of Curcuma longa, has gained widespread attention for its potential therapeutic properties, including anti-inflammatory, antioxidant and anticancer effects. However, its poor aqueous solubility, instability and limited bioavailability have hindered its clinical applications. New beads formulations based on sodium alginate biopolymer (SA) and poly vinyl alcohol (PVA) were successfully prepared and evaluated as a potential drug vehicle for extended release of curcumin (Cur). Pristine and curcumin loaded calcium alginate/poly vinyl alcohol beads (CA/PVA and CA/PVA/Cur) at different compositions of SA and PVA were prepared by an ionotropic gelation method of SA followed by two freeze-thawing (FT) cycles for further crosslinking of PVA. Characterization techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-Visible spectroscopy, thermogravimetric analysis (TGA) and x-ray diffraction (XRD) were used to confirm the successful microencapsulation of curcumin within the CA/PVA microcapsules. Furthermore, the swelling of pristine beads, pH-sensitive properties and in vitro release studies of curcumin loaded beads were investigated at 37 °C in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). The effect of the polymer blend ratio, the encapsulation efficiency (EE %) of curcumin, the loading capacity (LC µg/mg), the sphericity factor (SF), the antioxidant activity of the elaborated beads and their antimicrobial properties against bacteria and fungi were just as much evaluated. The obtained results indicate that the swelling and the behavior of the developed beads were influenced by the pH of the test medium and the PVA content. The introduction of PVA into the SA matrix greatly enhanced the physicochemical properties, the encapsulation efficiency and the loading capacity of the elaborated microparticles. Results also suggested that the antioxidant activity of the loaded beads (CA/PVA/Cur) showed a higher DPPH radical scavenging activity while the bacterial and fungal strains proved sensitive to the different formulations used in the assay. Moreover, the important drug encapsulation efficiency and the sustainable drug release of these materials make them promising for the development of new drug carrier systems for colon targeting.


Assuntos
Curcumina , Curcumina/farmacologia , Curcumina/química , Hidrogéis/química , Alginatos/química , Antioxidantes/farmacologia , Álcool de Polivinil/química , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Concentração de Íons de Hidrogênio
2.
Environ Technol ; 41(16): 2049-2060, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30500314

RESUMO

The scope of this work consists in studying the possibility of using the long-lasting antimicrobial poly(ε-caprolactone)/silver-montmorillonite (PCL/Ag-MMT) materials which we have developed in our previous research, as new class of nanocomposite membranes, finding their application in the wastewater treatment. The surface properties of these hybrid membranes were investigated by scanning electron microscopy (SEM) analysis and contact angle measurements. The SEM results showed that the synthesized membranes exhibited homogeneous sponge microstructures. It was found that the gradual inclusion of nanoparticles (2, 3 and 5 wt. %) into PCL matrix induced a remarkable increase of the membrane thickness. Moreover, these hybrid materials exhibited an enhancement of the surface hydrophilicity attributed to the hydrophilic nature of clay incorporated. The water contact angle of the PCL membrane surface noticeably decreased after the Ag-MMT addition: dropping from 82.60° for PCL 0%Ag-MMT to 64.28° for PCL 5%Ag-MMT membrane. The antimicrobial properties of the membranes were confirmed using Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) as the model bacteria. Quality parameters including total suspended solids (TSS), electric conductivity (EC), nitrates, chlorides, bicarbonates, heavy metals and other trace elements, were determined before and after treatment of real wastewater. A decrease of nitrates by 15.12%, a diminution of sulphates by 45.61% and a removal of 41.38%, 53.57% and61.11% for heavy metals Pb, Zn and Cd respectively indicating clearly that the ultrafiltration process using PCL/AgMMT nanocomposite membranes is an effective way to eliminate the wastewater effluents.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Bentonita , Poliésteres , Prata , Ultrafiltração , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...