Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(5): 3492-3506, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38855686

RESUMO

This study introduces a cutting-edge fiber-optic dosimetry (FOD) sensor designed for measuring radiation in biological settings. The accuracy and precision of dosimeters for small animals, particularly prolonged exposure to nonuniform radiation fields, are always challenging. A state-of-the-art in-vivo dosimeter utilizing glass-encapsulated Thermoluminescence cylindrical detector (TLD) was introduced. The FODs are implanted into the rat during a prolonged irradiation scenario involving 137Cs where the rat has the freedom to move within a heterogeneous radiation domain. The implantation surgery was verified with X-ray computed tomography (CT) in addition to biochemical and pathological tests to assess the biocompatibility of FOD in vivo. A versatile FOD is designed for industrial and medical fields, which demand accurate and resilient radiation dosimeters. The dose measurements are associated with precise two-dimensional (2D) radiation distribution imaging. Three cylindrical FODs and three standards TLD_100 for each rat were tested. The measurements of peak irradiation before and after exposure reveal greater stability and superior sensitivity when compared to standard thermo-luminescence detectors in an in-vivo animal test. To the best of our knowledge, FOD testing on live animals is presented for the first time in this paper. Regarding the safety and biocompatibility of FOD, no morphological signs with any kind of inflammation or sensitivity toward the FOD material have been remarked. Moreover, with the current FOD, there is no oedema between the epidermal, dermal, and subdermal sections at the site of implantation. The results also show the stable levels of white blood cells (lymphocytes, granulocytes, MID) as blood inflammatory markers before surgery and at the time of extraction of the implanted dosimeters, thus confirming the biocompatibility for each optical fiber cylinder dosimeter. As a result, the new dosimeters have excellent biocompatibility in living tissues and have 100% accurate reusability intensity of the delivered radiation doses compared to TLD_100 which demonstrated a 45% reduction in its intensity accuracy.

2.
Histochem Cell Biol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913116

RESUMO

Ionizing radiation produces deleterious effects on living organisms. The present investigation has been carried out to study the prophylactic as well as the therapeutic effects of treated rats with quercetin (Quer) and curcumin (Cur), which are two medicinal herbs known for their antioxidant activities against damages induced by whole-body fractionated gamma irradiation. Exposure of rats to whole-body gamma irradiation induced a significant decrease in erythrocyte (RBC), leukocyte (WBCs), platelet count (Plt), hemoglobin concentration (Hb), hematocrit (Hct %), mean erythrocyte hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and mean erythrocyte volume (MCV); a high increase in plasma thiobarbituric acid reactive substances (TBARS); a nonsignificant statistical decrease in the mean value of serum glutathione (GSH); a significant increase in plasma alanine transferase (ALT), aspartate transferase (AST), alkaline phosphates (ALP), serum total protein, serum total cholesterol levels, total triglycerides levels, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels; and with marked histological changes and structural changes measured by Fourier transform infrared (FTIR). Applying both quercetin and curcumin pre- and postexposure to gamma radiation revealed a remarkable improvement in all the studied parameters. The cellular damage by gamma radiation is greatly mitigated by the coadministration of curcumin and quercetin before radiation exposure.

3.
Biosensors (Basel) ; 13(12)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38131770

RESUMO

In this paper, we propose a novel fiber-optical dosimetry sensor for radiation measurement in biological applications. A two-dimensional (2D) fiber-optical dosimeter (FOD) for radiation measurement is considered. The sensors are arranged as a 2D array in a tailored holder. This FOD targets accurate industrial and medical applications which seek more tolerant radiation dosimeters. In this paper, the FOD sensors are subjected to gamma-ray radiation facilities from the 137Cs gamma-ray irradiator type for low doses and 60Co gamma-ray irradiator for high doses. For better evaluation of radiation effects on the FOD sample, the measurements are performed using eight sensors (hollow cylinder shape) with two samples in each dose. The sensors were measured before and after each irradiation. To the author's knowledge, the measurements of FOD transplanted inside animals are presented for the first time in this paper. A 2D simulation program has been implemented for numerical simulation based on the attenuation factors from the absorbed dose inside the in vivo models. A comparison between the FOD and the standard thermo-luminescence detector is presented based on the test of in vivo animal models. The results indicate that the proposed FOD sensor is more stable and has higher sensitivity.


Assuntos
Radiometria , Animais , Radiometria/métodos , Desenho de Equipamento
4.
Front Pharmacol ; 14: 1293230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155907

RESUMO

Introduction: Ionizing radiation (IR) is effectively used in the treatment of oral malignancies; however, it might also significantly harm the surrounding tissues. Whey protein isolate (WP) is a protein derived from milk that exhibits a wide range of bioactivities. Therefore, the present research aimed to delineate the mitigating impact of WP against gamma irradiation-induced lingual damage. Methods: Rats were randomized into 5 groups: Control (saline, orally, 14 days), WP (WP; 0.5 g/kg b. w., orally, 14 days), IR (saline, orally, 14 days, exposed to 6 and 3 Gy on days 4 and 6, respectively), WP+IR (WP was given orally for 14 days before and after IR exposure; exposed to 6 and 3 Gy on days 4 and 6, respectively), and IR+WP (WP, orally, started 24 h after 1st IR exposure till the end of the experiment) groups. Samples were collected at two-time intervals (on the 7th and 14th days). Results and Discussion: Oxidative stress was stimulated upon IR exposure in tongue, indicated by boosted malondialdehyde (MDA) level, along with a decrease in the total antioxidant capacity (TAC) level, superoxide dismutase (SOD), and catalase (CAT) activities. Additionally, IR exposure depicted an increase of serum IgE, inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-6, along with overexpression mRNA levels of nuclear factor kappa-B transcription factor/p65 (NF-κB/p65), and down-regulation of nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase (HO-1) mRNA levels in tongue tissue. Moreover, IR triggered alterations in lingual histological architecture. The antioxidant and anti-inflammatory properties of WP mitigated oxidative damage, inflammation, and desquamation that were brought on following IR exposure. The protective administration of WP markedly decreases IR-induced lingual harm compared to the mitigation protocol. Our findings recommend WP supplements to the diets of cancer patients undergoing IR that might aid radioprotective effects.

5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3647-3657, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37289284

RESUMO

Radiotherapy (RT) is one of the primary cancer treatment methods. Radiosensitizers are used to enhance RT and protect healthy tissue. Heavy metals have been studied as radiosensitizers. Thus, iron oxide and iron oxide/silver nanoparticles have been the main subjects of this investigation. A simple honey-based synthesis of iron (IONPs) and iron-silver bimetallic nanoparticles (IO@AgNPs) were prepared followed by characterization with transmission electron microscope (TEM), absorption spectra, vibrating sample magnetometer (VSM), and X-ray diffraction (XRD). Additionally, Ehrlich carcinoma was induced in 30 adult BALB/c mice and divided into 6 groups. Mice of group G1 were not treated with nanoparticles or exposed to irradiation (control group), and group G2 and G3 were treated with IONPs and IO@AgNPs respectively. Mice of group G4 were exposed to a high dose of gamma radiation (HRD) (12 Gy). Groups G5 and G6 were treated with IONPs and IO@AgNPs followed by exposure to a low dose of gamma radiation (LRD) (6 Gy) respectively. The impact of NP on the treatment protocol was evaluated by checking tumor growth, DNA damage, and level of oxidative stress in addition to investigating tumor histopathology. Additional research on the toxicity of this protocol was also evaluated by looking at the liver's cytotoxicity. When compared to HRD therapy, combination therapy (bimetallic NPs and LRD) significantly increased DNA damage by about 75% while having a stronger efficacy in slowing Ehrlich tumor growth (at the end of treatment protocol) by about 45%. Regarding the biosafety concern, mice treated with combination therapy showed lower alanine aminotransferase (ALT) levels in their liver tissues by about half the value of HRD. IO@AgNPs enhanced the therapeutic effect of low-dose radiation and increased the efficacy of treating Ehrlich tumors with the least amount of harm to normal tissues as compared to high radiation dosage therapy.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Ferro , Prata/farmacologia , Prata/uso terapêutico , Neoplasias/tratamento farmacológico
6.
BMC Complement Med Ther ; 23(1): 162, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210478

RESUMO

INTRODUCTION: Breast cancer (BC) cells often develop multiple mechanisms of chemo- and radio-resistance during tumor progression, which is the major reason for the failure of breast cancer therapy. Targeted nanomedicines have tremendous therapeutic potential in BC treatment over their free drug counterparts. Searching for chemo- and radio-sensitizers to overcome such resistance is therefore urgently required. The goal of this study is to evaluate and compare the radio-sensitizer efficacy of amygdalin-folic acid nanoparticles (Amy-F) on MCF-7 and MDA-MB-231 cells. MATERIALS AND METHODS: The effects of Amy-F on MCF-7 and MDA-MB-231 cell proliferation and IC50 were assessed using MTT assay. The expression of proteins involved in several mechanisms induced by Amy-F in MCF-7 and MDA-MB-231 cells, including growth inhibition, apoptosis, tumor growth regulators, immuno-modulators, and radio-sensitizing activities were evaluated via flow cytometry and ELISA assay. RESULTS: Nanoparticles demonstrated sustained Amy-F release properties and apparent selectivity towards BC cells. Cell-based assays revealed that Amy-F markedly suppresses cancer cell growth and improves radiotherapy (RT) through inducing cell cycle arrest (G1 and sub-G1), and increases apoptosis as well as reduces the proliferation of BC by down-regulating mitogen-activated protein kinases (MAPK/P38), iron level (Fe), nitric oxide (NO), and up-regulating the reactive oxygen species level (ROS). Amy-F has also been shown to suppress the expression of the cluster of differentiation (CD4 and CD80), and interfere with the Transforming growth factor beta (TGF- ß)/Interferon-gamma (INF-g)/Interleukin-2 (IL-2)/Interleukin-6 (IL-6)/Vascular endothelial growth factor (VEGF) induced suppression in its signaling hub, while up-regulating natural killer group 2D receptor (NKG2D) and CD8 expression. CONCLUSIONS: Collectively, the novel Amy-F either alone or in combination with RT abrogated BC proliferation.


Assuntos
Amigdalina , Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Amigdalina/farmacologia , Amigdalina/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Proliferação de Células
7.
Heliyon ; 7(7): e07469, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34286134

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN) is a rare hereditary neurodegenerative disease characterized by an accumulation of iron within the brain. In the present report, we describe a family with 4 affected siblings presenting with variable clinical manifestations, e.g., parkinsonian features, dystonia and slow disease progression over 5 years. Exome sequencing revealed a causative variant in the pantothenate kinase 2 gene (PANK2). Variant NM_024960.6:c.710C > T was homozygous in all affected subjects. Our report describes the first genetically confirmed cases of PKAN in the Egyptian population. Studying genetics of neurodegenerative diseases in different ethnicities is very important for determining clinical phenotypes and understanding pathomechanisms of these diseases.

8.
Biol Trace Elem Res ; 196(1): 297-317, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31529241

RESUMO

The purposes of this work are to evaluate the antimicrobial, antibiofilm, anticancer, and antioxidant abilities of anisotropic zinc oxide nanoparticles (ZnO NPs) synthesized by a cost-effective and eco-friendly sol-gel method. The synthesized ZnO NPs were entirely characterized by UV-Vis, XRD, FTIR, HRTEM, zeta potential, SEM mapping, BET surface analyzer, and EDX elemental analysis. Antimicrobial and antibiofilm activities of ZnO NPs were investigated against multidrug-resistant (MDR) bacteria and yeast causing serious diseases like urinary tract infection (UTI). The anticancer activity was performed against Ehrlich ascites carcinoma (EAC). Additionally, antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) was observed. The synthesized ZnO NPs exhibited an absorption peak at 385.0 nm characteristic to the surface plasmon resonance (SPR). Data obtained from HRTEM, SEM, and XRD confirmed the anisotropic crystalline nature of the prepared ZnO NPs with an average particle size of 68.2 nm. The calculated surface area of the prepared ZnO NPs was 10.62 m2/g and the porosity was 13.16%, while pore volume was calculated to be 0.013 cm3/g and the average pore size was about 3.10 nm. The prepared ZnO NPs showed promising antimicrobial activity against all tested UTI-causing pathogens. It showed a prominent antimicrobial capability against Candida tropicalis with a zone of inhibition (ZOI) reaching 22.4 mm, 13 mm ZOI for Bacillus subtilis, and 12.5 mm ZOI for Pseudomonas aeruginosa. Additionally, the prepared ZnO NPs showed enhanced biofilm repression of about 79.33%, 72.94%, and 33.68% against B. subtilis, C. tropicalis, and P. aeruginosa, respectively. Moreover, the prepared ZnO NPs had a powerful antioxidant property with 33.0% scavenging ability after applied DPPH assay. Surprisingly, upon ZnO NPs treatment, cancer cell viability reduced from 100 to 58.5% after only 24 h due to their unique antitumor activity. Therefore, according to these outstanding properties, this study could give insights for solving serious industrial, pharmaceutical, and medical challenges, particularly in the EAC and UTI medications.


Assuntos
Antioxidantes/farmacologia , Carcinoma de Ehrlich/tratamento farmacológico , Nanopartículas/química , Infecções Urinárias/tratamento farmacológico , Óxido de Zinco/farmacologia , Animais , Anisotropia , Antioxidantes/química , Antioxidantes/economia , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/economia , Carcinoma de Ehrlich/economia , Carcinoma de Ehrlich/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Análise Custo-Benefício , Humanos , Nanopartículas/economia , Tamanho da Partícula , Picratos/antagonistas & inibidores , Picratos/economia , Propriedades de Superfície , Infecções Urinárias/economia , Óxido de Zinco/química , Óxido de Zinco/economia
9.
Colloids Surf B Biointerfaces ; 180: 411-428, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31085460

RESUMO

Biomedical applications of nanomaterials have received considerable attention and interest from many researchers over the past decade due to the key role they can play in enhancing public health. Different types of nanomaterials possess both diagnostic and therapeutic potential owing to their outstanding properties compared to their bulk counterparts. Herein, we present, analyze and provide significant insights and recent advances about the promising biomedical applications of nanoparticles including bioimaging of biological environments and its role as a significant tool for early detection of many diseases with respect to traditional means, explaining their types and limitations. In addition, different types of nanoparticles acting as effective bio-sensors and detectors of our body have been analyzed. Moreover, the therapeutic potential of different types of nanoparticles and their attractive antimicrobial effects allowing them to act as powerful and new drug substitutes against multi-drug resistant bacteria and pathogenic fungi. Finally, we introduce some nanoparticles as powerful antioxidants and promising candidates in cancer therapeutics. We conclude that this review can give up-to-date information about various biomedical applications of nanoparticles and will be of great value and interest to researchers and scientists of materials science, biology, chemistry, and medicine.


Assuntos
Tecnologia Biomédica/métodos , Nanoestruturas/uso terapêutico , Nanomedicina Teranóstica , Biofilmes , Técnicas Biossensoriais , Diagnóstico por Imagem , Humanos
10.
Asian Pac J Cancer Prev ; 16(16): 7103-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26514497

RESUMO

The present study was conducted to investigate the effect of γ-radiation alone or combined with a cytotoxic drug, simvastatin, on viability and cell cycling of a myeloma cell line. P3NS1 myeloma cells were treated with the selected dose of simvastatin (0.1 µM/l) 24 hours prior to γ-irradiation (0.25, 0.5 and 1 Gy). The cell viability, induction of apoptosis, cell death, cell cycling, generation of ROS, and expression of P53, Bax, Bcl2, caspase3, PARP1 and Fas genes were estimated. The results indicated that simvastatin (0.1 µM/l) treatment for 24 hours prior to γ- irradiation increased cell death to 37.5% as compared to 4.81% by radiation (0.5 Gy) alone. It was found that simvastatin treatment before irradiation caused arrest of cells in G0/G1 and G2/M phases as assessed using flow cytometry. Interestingly, simvastatin treatment of P3NS1 cells increased the intracellular ROS production and decreased antioxidant enzyme activity with increased P53, Bax and Caspase3 gene expression while that of Bcl2 was decreased. Consequently, our results indicated that pre-treatment with simvastatin increased radio sensitivity of myeloma tumor cells in addition to apoptotic effects through an intrinsic mitochondrial pathway.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Raios gama , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mieloma Múltiplo/terapia , Sinvastatina/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Caspase 3/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos da radiação , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Expressão Gênica/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos da radiação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Tolerância a Radiação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...