Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1131893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266430

RESUMO

Introduction: Obesity is associated with low-grade chronic inflammation, altered levels of adipocytokines, and impaired regulation of gastrointestinal hormones. Secreted, these factors exert immunostimulatory functions directly influencing peripheral immune cells. Methods: In the realm of this study, we aimed to investigate the composition and activation status of peripheral blood immune cells in female patients with morbid obesity compared to lean controls using high-dimensional mass cytometry. Besides, we also assessed the influence of bariatric surgery with respect to its ability to reverse obesity-associated alterations within the first-year post-surgery. Results: Patients with morbid obesity showed typical signs of chronic inflammation characterized by increased levels of CRP and fibrinogen. Apart from that, metabolic alterations were characterized by increased levels of leptin and resistin as well as decreased levels of adiponectin and ghrelin compared to the healthy control population. All these however, except for ghrelin levels, rapidly normalized after surgery with regard to control levels. Furthermore, we found an increased population of monocytic CD14+, HLA-DR-, CD11b+, CXCR3+ cells in patients with morbid obesity and an overall reduction of the HLA-DR monocytic expression compared to the control population. Although CD14+, HLA-DR-, CD11b+, CXCR3+ decreased after surgery, HLA-DR expression did not recover within 9 - 11 months post-surgery. Moreover, compared to the control population, patients with morbid obesity showed a perturbed CD4+ T cell compartment, characterized by a strongly elevated CD127+ memory T cell subset and decreased naïve T cells, which was not recovered within 9 - 11 months post-surgery. Although NK cells showed an activated phenotype, they were numerically lower in patients with morbid obesity when compared to healthy controls. The NK cell population further decreased after surgery and did not recover quantitatively within the study period. Conclusions: Our results clearly demonstrate that the rapid adaptions in inflammatory parameters and adipocytokine levels that occur within the first year post-surgery do not translate to the peripheral immune cells. Apart from that, we described highly affected, distinct immune cell subsets, defined as CD127+ memory T cells and monocytic CD14+, HLA-DR, CD11b+, CXCR3+ cells, that might play a significant role in understanding and further decoding the etiopathogenesis of morbid obesity.


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Feminino , Humanos , Obesidade Mórbida/cirurgia , Grelina , Adipocinas , Antígenos HLA-DR , Subpopulações de Linfócitos T/metabolismo , Inflamação/complicações
2.
Front Immunol ; 13: 842340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371049

RESUMO

The generation, differentiation, survival and activation of B cells are coordinated by signals emerging from the B cell antigen receptor (BCR) or its precursor, the pre-BCR. The adaptor protein SLP65 (also known as BLNK) is an important signaling factor that controls pre-B cell differentiation by down-regulation of PI3K signaling. Here, we investigated the mechanism by which SLP65 interferes with PI3K signaling. We found that SLP65 induces the activity of the small GTPase RHOA, which activates PTEN, a negative regulator of PI3K signaling, by enabling its translocation to the plasma membrane. The essential role of RHOA is confirmed by the complete block in early B cell development in conditional RhoA-deficient mice. The RhoA-deficient progenitor B cells showed defects in activation of immunoglobulin gene rearrangement and fail to survive both in vitro and in vivo. Reconstituting the RhoA-deficient cells with RhoA or Foxo1, a transcription factor repressed by PI3K signaling and activated by PTEN, completely restores the survival defect. However, the defect in differentiation can only be restored by RhoA suggesting a unique role for RHOA in B cell generation and selection. In full agreement, conditional RhoA-deficient mice develop increased amounts of autoreactive antibodies with age. RHOA function is also required at later stage, as inactivation of RhoA in peripheral B cells or in a transformed mature B cell line resulted in cell loss. Together, these data show that RHOA is the key signaling factor for B cell development and function by providing a crucial SLP65-activated link between BCR signaling and activation of PTEN. Moreover, the identified essential role of RHOA for the survival of transformed B cells offers the opportunity for targeting B cell malignancies by blocking RHOA function.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Células Precursoras de Linfócitos B , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Camundongos , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/genética , Proteína rhoA de Ligação ao GTP
3.
Oncogenesis ; 11(1): 1, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013097

RESUMO

The D-type cyclins (CCND1, CCND2, and CCND3) in association with CDK4/6 are known drivers of cell cycle progression. We reported previously that inactivation of FOXO1 confers growth arrest and apoptosis in B-ALL, partially mediated by subsequent depletion of CCND3. Given that previously the canonical MYC target CCND2 has been considered to play the major role in B-ALL proliferation, further investigation of the role of FOXO1 in CCND3 transcription and the role of CCND3 in B-ALL is warranted. In this study, we demonstrated that CCND3 is essential for the proliferation and survival of B-ALL, independent of the mutational background. Respectively, its expression at mRNA level exceeds that of CCND1 and CCND2. Furthermore, we identified FOXO1 as a CCND3-activating transcription factor in B-ALL. By comparing the effects of CCND3 depletion and CDK4/6 inhibition by palbociclib on B-ALL cells harboring different driver mutations, we found that the anti-apoptotic effect of CCND3 is independent of the kinase activity of the CCND3-CDK4/6 complex. Moreover, we found that CCND3 contributes to CDK8 transcription, which in part might explain the anti-apoptotic effect of CCND3. Finally, we found that increased CCND3 expression is associated with the development of resistance to palbociclib. We conclude that CCND3 plays an essential role in the maintenance of B-ALL, regardless of the underlying driver mutation. Moreover, downregulation of CCND3 expression might be superior to inhibition of CDK4/6 kinase activity in terms of B-ALL treatment.

4.
Nat Commun ; 11(1): 3194, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581241

RESUMO

Ph+ acute lymphoblastic leukemia (ALL) is characterized by the expression of an oncogenic fusion kinase termed BCR-ABL1. Here, we show that interleukin 7 receptor (IL7R) interacts with the chemokine receptor CXCR4 to recruit BCR-ABL1 and JAK kinases in close proximity. Treatment with BCR-ABL1 kinase inhibitors results in elevated expression of IL7R which enables the survival of transformed cells when IL7 was added together with the kinase inhibitors. Importantly, treatment with anti-IL7R antibodies prevents leukemia development in xenotransplantation models using patient-derived Ph+ ALL cells. Our results suggest that the association between IL7R and CXCR4 serves as molecular platform for BCR-ABL1-induced transformation and development of Ph+ ALL. Targeting this platform with anti-IL7R antibody eliminates Ph+ ALL cells including those with resistance to commonly used ABL1 kinase inhibitors. Thus, anti-IL7R antibodies may provide alternative treatment options for ALL in general and may suppress incurable drug-resistant leukemia forms.


Assuntos
Proteínas de Fusão bcr-abl/metabolismo , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Cromossomo Filadélfia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores CXCR4/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Feminino , Proteína Forkhead Box O1/metabolismo , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Proteínas de Fusão bcr-abl/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-7/farmacologia , Subunidade alfa de Receptor de Interleucina-7/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-7/genética , Camundongos , Camundongos Mutantes , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores CXCR4/genética , Transdução de Sinais/efeitos dos fármacos
5.
Cell Rep ; 24(2): 391-405, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29996100

RESUMO

Activation of phosphoinositide 3-kinase (PI3K) signaling plays a central role in regulating proliferation and survival of B cells. Here, we tested the hypothesis that B cell receptor (BCR)-mediated activation of PI3K induces the terminal differentiation factor Blimp-1 that interferes with proliferation and survival, thereby controlling the expansion of activated B cells. In fact, B-cell-specific inactivation of Pten, the negative regulator of PI3K signaling, leads to deregulated PI3K activity and elevated Blimp-1 expression. Combined deficiency for Pten and Blimp-1 results in abnormal expansion of B-1 B cells and splenomegaly. Interestingly, Blimp-1 also acts at early stages of B cell development to regulate B cell selection, as Blimp-1 deficiency results in an increased proportion of autoreactive B cells. Together, our data suggest that the combined requirement of deregulated PI3K signaling in addition to defective terminal differentiation represents the basis for proper selection and expansion of developing B cells.


Assuntos
Linfócitos B/citologia , Linfócitos B/metabolismo , Homeostase , Fosfatidilinositol 3-Quinases/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Animais , Compartimento Celular , Morte Celular , Diferenciação Celular , Proliferação de Células , Citoproteção , Feminino , Masculino , Camundongos Transgênicos , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/deficiência , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo
6.
Sci Rep ; 8(1): 1327, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358580

RESUMO

Phosphoinositide-3 kinase (PI3K) signaling is important for the survival of numerous cell types and class IA of PI3K is specifically required for the development of B cells but not for T cell development. Here, we show that class IA PI3K-mediated signals induce the expression of the transcription factor Pax5, which plays a central role in B cell commitment and differentiation by activating the expression of central B cell-specific signaling proteins such as SLP-65 and CD19. Defective class IA PI3K function leads to reduction in Pax5 expression and prevents B cell development beyond the stage expressing the precursor B cell receptor (pre-BCR). Investigating the mechanism of PI3K-induced Pax5 expression revealed that it involves a network of transcription factors including FoxO1 and Irf4 that directly binds to the Pax5 gene. Together, our results suggest that PI3K signaling links survival and differentiation of developing B cells with B cell identity and that decreased PI3K activity in pre-B cells results in reduced Pax5 expression and lineage plasticity.


Assuntos
Linfócitos B/metabolismo , Linfopoese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antígenos CD19/metabolismo , Linfócitos B/citologia , Linhagem Celular , Linhagem da Célula , Células Cultivadas , Proteína Forkhead Box O1/metabolismo , Fatores Reguladores de Interferon/metabolismo , Camundongos , Fator de Transcrição PAX5/metabolismo
7.
Diseases ; 5(2)2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28933366

RESUMO

Reactive oxygen species (ROS) are common products of mitochondrial oxidative phosphorylation, xenobiotics metabolism and are generated in response to several environmental stress conditions. Some of them play important biochemical roles in cellular signal transduction and gene transcription. On the other hand, ROS are known to be involved in a wide range of human diseases, including cancer. The excessive production of such ROS together with disruption of homeostasis detoxifying mechanisms can mediate a series of cellular oxidative stresses. The oxidative stress of redundant free radicals production can lead to oxidative denaturation of cellular macromolecules including proteins, lipids and DNA. Moreover, oxidative damage is one of the major causes of DNA mutations, replication errors and genomic abnormalities which result in either inhibition or induction of transcription, and end with the disturbance of signal transduction pathways. Among affected signaling pathways are redox-sensitive kinases. The stimulation of these kinases induces several transcription factors through the phosphorylation of their module proteins. The activation of such pathways induces proliferation and cellular transformation. A diet rich in antioxidant compounds has potential health benefits, and there is a growing interest in the role of natural antioxidants in nutrition for prevention and cure of cancer diseases. A controversy has risen regarding the relation between antioxidants and the significant decrease in the risk of cancer incidence. In this review, we will focus on redox-sensitive kinases signaling pathways, highlighting the effects of dietary antioxidant on the prevention, incidence, prognosis or even treatment of human cancers. In addition, we will place emphasis on the chemical classes of pterocarpans as natural anti-oxidants/cancers as well as their underlying mechanisms of action, including their effects on MAPKs and topoisomerase activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...