Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37227638

RESUMO

Fenton-like degradation of contaminants is considered to be a feasible method for eliminating environmental pollution. In this study, a novel ternary Mg0.8Cu0.2Fe2O4/SiO2/CeO2 nanocomposite was fabricated using a novel ultrasonic-assisted technique, and investigated as a Fenton-like catalyst for the removal of tartrazine (TRZ) dye. The nanocomposite was synthesized by first coating the SiO2 shell around the Mg0.8Cu0.2Fe2O4 core via a Stöber-like process to form Mg0.8Cu0.2Fe2O4/SiO2. Then, a simple ultrasonic-assisted route was used to synthesize Mg0.8Cu0.2Fe2O4/SiO2/CeO2 nanocomposite. This approach provides a simple and environmentally friendly way to produce this material without the use of any additional reductants or organic surfactants. The fabricated sample demonstrated excellent Fenton-like activity. The efficiency of Mg0.8Cu0.2Fe2O4 was significantly enhanced by the incorporation of SiO2 and CeO2, and complete removal of TRZ (30 mg/L) was achieved within 120 min using 0.2 g/L of Mg0.8Cu0.2Fe2O4/SiO2/CeO2. The scavenger test shows that the main active species is the strong oxidizing of hydroxyl radicals (HO•). Consequently, the Fenton-like mechanism of Mg0.8Cu0.2Fe2O4/SiO2/CeO2 is explained based on the coexistence of Fe3+/Fe2+, Cu2+/Cu+, and Ce4+/Ce3+ redox couples. The removal efficiency of TRZ dye remained around 85% after the third recycling run, revealing that the nanocomposite could be employed to eliminate organic contaminants in water treatment. This research opened up a new avenue for expanding the practical application of new-generation Fenton-like catalysts.

2.
Environ Sci Pollut Res Int ; 30(22): 62494-62507, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36943563

RESUMO

In this research work, the photocatalytic degradation of methyl orange dye was studied on nickel oxide supported on a natural Moroccan clay (Ni/NC). These catalysts have been prepared by dry impregnation of a nickel nitrate solution with different weight percentages (5, 10, 20% NiO). Experimental responses were obtained by a Box-Behnken (BBD) experimental design by varying the catalyst mass, solution pH, and initial dye concentration at three levels (low, medium, and high). The prepared catalysts were characterized using powder X-ray diffraction (XRD) to assess crystallinity and structure, Fourier transform infrared spectroscopy (FTIR) to detect different functional groups, scanning electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis to study the surface morphology, and the optical characteristics of the catalysts were studied using absorption and diffuse reflectance measurements in the UV-visible range. The photocatalytic activity of the catalysts was evaluated in aqueous solutions under UV irradiation. ANOVA (analysis of variance) test is employed to recognize the significant factors and their interactions and then give the model equation for the percent dye degradation. The optimal values of the studied factors were determined by numerical optimization, and the results showed that about 100% degradation of the methyl orange dye could be achieved under the following optimal conditions, which are pH = 4.38, catalyst concentration of 0.99 g/L, and initial dye concentration of 30.42 mg/L.


Assuntos
Níquel , Raios Ultravioleta , Argila , Microscopia Eletrônica de Varredura , Catálise
3.
Environ Sci Pollut Res Int ; 30(9): 23938-23964, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36329247

RESUMO

In the present work, we prepared MgO-La2O3-mixed-metal oxides (MMO) as efficient photocatalysts for degradation of organic pollutants. First, a series of MgAl-%La-CO3-layered double hydroxide (LDH) precursors with different contents of La (5, 10, and 20 wt%) were synthesized by the co-precipitation process and then calcined at 600 °C. The prepared materials were characterized by XRD, SEM-EDX, FTIR, TGA, ICP, and UV-vis diffuse reflectance spectroscopy. XRD indicated that MgO, La2O3, and MgAl2O4 phases were found to coexist in the calcined materials. Also, XRD confirms the orthorhombic-tetragonal phases of MgO-La2O3. The samples exhibited a small band gap of 3.0-3.22 eV based on DRS. The photocatalytic activity of the catalysts was assessed for the degradation of two dyes, namely, tartrazine (TZ) and patent blue (PB) as model organic pollutants in aqueous mediums under UV-visible light. Detailed photocatalytic tests that focused on the impacts of dopant amount of La, catalyst dose, initial pH of the solution, irradiation time, dye concentration, and reuse were carried out and discussed in this research. The experimental findings reveal that the highest photocatalytic activity was achieved with the MgO-La2O3-10% MMO with photocatalysts with a degradation efficiency of 97.4% and 93.87% for TZ and PB, respectively, within 150 min of irradiation. The addition of La to the sample was responsible for its highest photocatalytic activity. Response surface methodology (RSM) and gradient boosting regressor (GBR), as artificial intelligence techniques, were employed to assess individual and interactive influences of initial dye concentration, catalyst dose, initial pH, and irradiation time on the degradation performance. The GBR technique predicts the degradation efficiency results with R2 = 0.98 for both TZ and PB. Moreover, ANOVA analysis employing CCD-RSM reveals a high agreement between the quadratic model predictions and the experimental results for TZ and PB (R2 = 0.9327 and Adj-R2 = 0.8699, R2 = 0.9574 and Adj-R2 = 0.8704, respectively). Optimization outcomes indicated that maximum degradation efficiency was attained under the following optimum conditions: catalyst dose 0.3 g/L, initial dye concentration 20 mg/L, pH 4, and reaction time 150 min. On the whole, this study confirms that the proposed artificial intelligence (AI) techniques constituted reliable and robust computer techniques for monitoring and modeling the photodegradation of organic pollutants from aqueous mediums by MgO-La2O3-MMO heterostructure catalysts.


Assuntos
Corantes , Óxido de Magnésio , Corantes/química , Fotólise , Inteligência Artificial , Óxidos , Água/química , Catálise
4.
Int J Biol Macromol ; 166: 707-721, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137390

RESUMO

This study aims to evaluate and understand the adsorption of eriochrome black T (EB) by chitosan extracted from local shrimp shells under different experimental conditions. Chitosan samples were characterized by XRD, SEM, and FTIR. Experimental results indicate that the process was pH-dependent with a high adsorption capacity in acidic medium. The adsorption was rapid and kinetic data were suitably correlated to the pseudo-second-order kinetic model. EB molecules were adsorbed on monolayer according to the Langmuir model with an adsorption capacity of 162.3 mg/g. On the other hand, it should be noted that calculated quantum chemical parameters support the experimentally obtained results. The interaction energies calculated for (molecule/chitosan) complexes were in the order of H2EB- > HEB2- (O38) > HEB2- (O48) > EB > H3EB > EB3-, which means that the best and possible adsorption process can take place with H2EB- form. The molecular dynamics (MD) approach was performed to illuminate the nature of the relationship between the EB and the chitosan (110) surface. It was found that the chitosan (110) surface adsorbs EB molecule in a nearby parallel orientation. The higher negative adsorption energy determined for the H2EB- implies that the adsorption mechanism is the typical chemisorption.


Assuntos
Compostos Azo/química , Quitosana/química , Adsorção , Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...