Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38746258

RESUMO

Humans have the remarkable ability to manage foot-ground interaction seamlessly across terrain changes despite the high dynamic complexity of the task. Understanding how adaptation in the neuromotor system enables this level of robustness in the face of changing interaction dynamics is critical for developing more effective gait retraining interventions. We developed an adjustable surface stiffness treadmill (AdjuSST) to trigger these adaptation mechanisms and enable studies to better understand human adaptation to changing foot-ground dynamics. The AdjuSST system makes use of fundamental beam-bending principles; it controls surface stiffness by controlling the effective length of a cantilever beam. The beam acts as a spring suspension for the transverse endpoint load applied through the treadmill. The system is capable of enforcing a stiffness range of 15-300kN/m within 340 ms, deflecting linearly downwards up to 10 cm, and comfortably accommodating two full steps of travel along the belt. AdjuSST offers significant enhancements in effective walking surface length compared to similar systems, while also maintaining a useful stiffness range and responsive spring suspension. These improvements enhance our ability to study locomotor control and adaptation to changes in surface stiffness, as well as provide new avenues for gait rehabilitation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38224507

RESUMO

Wearable exoskeletons show significant potential for improving gait impairments, such as interlimb asymmetry. However, a more profound understanding of whether exoskeletons are capable of eliciting neural adaptation is needed. This study aimed to characterize how individuals adapt to bilateral asymmetric joint stiffness applied by a hip exoskeleton, similar to split-belt treadmill training. Thirteen unimpaired individuals performed a walking trial on the treadmill while wearing the exoskeleton. The right side of the exoskeleton acted as a positive stiffness torsional spring, pulling the thigh towards the neutral standing position, while the left acted as a negative stiffness spring pulling the thigh away from the neutral standing position. The results showed that this intervention applied by a hip exoskeleton elicited adaptation in spatiotemporal and kinetic gait measures similar to split-belt treadmill training. These results demonstrate the potential of the proposed intervention for retraining symmetric gait.


Assuntos
Exoesqueleto Energizado , Humanos , Marcha , Caminhada , Extremidade Inferior , Teste de Esforço , Fenômenos Biomecânicos , Adaptação Fisiológica
3.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873204

RESUMO

Wearable exoskeletons show significant potential for improving gait impairments, such as interlimb asymmetry. However, a more profound understanding of whether exoskeletons are capable of eliciting neural adaptation is needed. This study aimed to characterize how individuals adapt to bilateral asymmetric joint stiffness applied by a hip exoskeleton, similar to split-belt treadmill training. Thirteen unimpaired individuals performed a walking trial on the treadmill while wearing the exoskeleton. The right side of the exoskeleton acted as a positive stiffness torsional spring, pulling the thigh towards the neutral standing position, while the left acted as a negative stiffness spring pulling the thigh away from the neutral standing position. The results showed that this intervention applied by a hip exoskeleton elicited adaptation in spatiotemporal and kinetic gait measures similar to split-belt treadmill training. These results demonstrate the potential of the proposed intervention for retraining symmetric gait.

4.
bioRxiv ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36798340

RESUMO

Wearable robotic exoskeletons hold great promise for gait rehabilitation as portable, accessible tools. However, a better understanding of the potential for exoskeletons to elicit neural adaptation-a critical component of neurological gait rehabilitation-is needed. In this study, we investigated whether humans adapt to bilateral asymmetric stiffness perturbations applied by a hip exoskeleton, taking inspiration from asymmetry augmentation strategies used in split-belt treadmill training. During walking, we applied torques about the hip joints to repel the thigh away from a neutral position on the left side and attract the thigh toward a neutral position on the right side. Six participants performed an adaptation walking trial on a treadmill while wearing the exoskeleton. The exoskeleton elicited time-varying changes and aftereffects in step length and propulsive/braking ground reaction forces, indicating behavioral signatures of neural adaptation. These responses resemble typical responses to split-belt treadmill training, suggesting that the proposed intervention with a robotic hip exoskeleton may be an effective approach to (re)training symmetric gait.

5.
Atten Percept Psychophys ; 82(8): 4096, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33078382

RESUMO

The article was published with a typo in the article title. The word "corpusclel's" should read "corpuscle".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...