Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv ; 30(1): 2174208, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36744372

RESUMO

Cyclodextrin nanosponges are solid nanoparticles, designed by cross-linking of cyclodextrin polymer; it has been used widely as a good delivery system for water insoluble drugs. The aim of this study is to enhance the solubility of Piroxicam (PXM) using ß-Cyclodextrin based nanosponges formulations. PXM nanosponge (PXM-NS) formulations were prepared using ß-cyclodextrin and carbonyldiimidazole as a cross linker, three ratios of ß-cyclodextrin to crosslinker in addition to three drug to nanosponges ratios were tested. Piroxicam nanosponge formulations were characterized for its particle size, zeta potential, physical compatibility and in vitro release. Stability studies at three temperatures (4 °C, 25 °C and 40 °C) were done for optimal formula. Finally, the in vivo analgesic activity and pharmacokinetic parameters of the optimal formula were conducted. The optimized PXM-NS formula (PXM-NS10) showed particle size (362 ± 14.06 nm), polydispersity index (0.0518), zeta potential (17 ± 1.05 mV), and %EE (79.13 ± 4.33). The dissolution study showed a significant increase in the amount of PXM dissolved compared with the unformulated drug. Stability studies confirmed that nanosponge showed accepted stability for 90 days at 4 °C and 25 °C. In vivo analgesic studies verified that there was a significant enhancement in the analgesic response to PXM in mice, and 1.42 fold enhancement in the relative bioavailability of PXM-NS10 as compared to commercial tablets. Nanosponge prepared under optimal conditions is an encouraging formula for increasing the solubility and therefore the bioavailability of Piroxicam.


Assuntos
Piroxicam , beta-Ciclodextrinas , Camundongos , Animais , Portadores de Fármacos , Solubilidade , Analgésicos
2.
Drug Deliv ; 29(1): 1836-1847, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35674640

RESUMO

Development of new approaches for oral delivery of an existing antiviral drug aimed to enhance its permeability and hence bioavailability. Ganciclovir (GC) is an antiviral drug that belongs to class III in biopharmaceutical classification. The encapsulation of poorly absorbed drugs within nanosized particles offers several characteristics to drug due to their acquired surface properties. In the following study, the solvent evaporation technique was used to incorporate GC, within elegant nanosize particles using cyclodextrin and shellac polymers for enhancing its permeability and release pattern. Formulation variables were optimized using 23 full factorial design. The prepared formulations were assessed for yield, particle size, content, and micromeritics behavior. The optimized formula (F6) was identified through differential scanning calorimetry and Fourier transform infrared. In vitro release and stability were also assessed. Pharmacokinetic parameters of optimized nano GC solid dispersion particles (NGCSD-F6) were finally evaluated. The optimized formula (F6) showed a mean particle size of 288.5 ± 20.7 nm, a zeta potential of about 23.87 ± 2.27, and drug content 95.77 ± 2.1%. The in vitro drug release pattern of F6 showed an initial burst release followed by a sustained release over the next 12 h. The optimized formula showed accepted stability upon storage at room and refrigerator temperatures for 6 months with good flowing properties (Carr's index = 18.28 ± 0.44). In vivo pharmacokinetic study in rabbits revealed 2.2 fold increases in the bioavailability of GC compared with commercial convention tablets. The study affords evidence for the success of the solid dispersion technique under specified conditions in improvement of bioavailability of GC.


Assuntos
Ganciclovir , Nanopartículas , Administração Oral , Animais , Antivirais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Portadores de Fármacos/química , Nanopartículas/química , Tamanho da Partícula , Coelhos , Solubilidade
3.
Drug Deliv ; 29(1): 364-373, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35068278

RESUMO

The aim of this work was to formulate glimepiride (class II drug) which is characterized by low solubility and high permeability as nanostructured particles using a cryogenic technique with an aid of water-soluble polymer to improve its aqueous solubility and hence its bioavailability. 27 formula of glimepiride nano size particles were prepared by a spray freezing into cryogenic liquid (SCFL) using poly vinyl pyrrolidone K-30 (PVP K-30); that three drug polymer ratio (1:1, 1:2, and 1:3), with three different volumes of feeding solution (50, 100, 150 mL), at three flow rates (10, 20, and 30 mL/min). The prepared formulations were evaluated for production yield, particle size, zeta potential, drug content, release rate, in vivo hypoglycemic activity, and bioavailability. All prepared formulations showed high production yield and drug content ranged between 91.1 ± 3.4% and 94.3 ± 1.8% and 95.1 ± 2.8% and 97.1 ± 2.5%, respectively. The mean particles size was ranged between 280 ± 62 nm and 520 ± 30 nm. The results of in vitro release study revealed significant enhancement in the solubility of prepared formulations compared with the pure drug. It was found that optimal formula showed a significant reduction in blood glucose levels in diabetic rats, and 1.79-fold enhancements in oral bioavailability compared with market tablets. Nanoparticle prepared by SCFL method is an encouraging formula for improving the solubility and the bioavailability of glimepiride.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Compostos de Sulfonilureia/administração & dosagem , Compostos de Sulfonilureia/farmacologia , Animais , Área Sob a Curva , Glicemia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Congelamento , Hipoglicemiantes/farmacocinética , Masculino , Taxa de Depuração Metabólica , Nanopartículas/química , Tamanho da Partícula , Povidona/química , Ratos , Ratos Wistar , Solubilidade , Compostos de Sulfonilureia/farmacocinética , Propriedades de Superfície , Comprimidos , Tecnologia Farmacêutica
4.
Drug Des Devel Ther ; 15: 2869-2884, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239296

RESUMO

INTRODUCTION: The aim of the work was to formulate salbutamol sulfate (SB) microspheres by using superhydrophobic surface (SHS) under different processing factors for improving its encapsulation efficiency, controling its release rate, and hence enhancing its bioavailability. METHODS: Cross-linked microspheres of chitosan (CN) and carrageenan (KN) were made on a SHS under a glutaraldehyde-saturated atmosphere. The formulations were designed and optimized based on 42 factorial design. Percentage encapsulation efficiency (%EE), particle size, swelling ratio, and in vitro release rate were characterized, and the in vivo performance of optimized formula was investigated in beagle dogs. RESULTS: The results showed that the prepared microspheres have a high %EE (97.11±0.78%) for F13. The swelling ratio was 4.2 at the end of the 8 hours for the optimized formula, and the in vitro release rate was controlled for 12 hours. In vivo study verified that there was a 1.61-fold enhancement in SB bioavailability from optimized formula (F13) compared to market tablet. CONCLUSION: The study suggested that microspheres prepared from CN/KN crosslinking on an SHS using glutaraldehyde atmosphere is a promising technique that can encapsulate and sustain the release of water-soluble drugs such as SB in addition to improving its in vivo pharmacokinetic profile.


Assuntos
Albuterol/administração & dosagem , Carragenina/química , Quitosana/química , Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Agonistas de Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacocinética , Albuterol/química , Albuterol/farmacocinética , Animais , Disponibilidade Biológica , Química Farmacêutica , Reagentes de Ligações Cruzadas/química , Preparações de Ação Retardada , Cães , Liberação Controlada de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Microesferas , Tamanho da Partícula , Solubilidade
5.
Drug Des Devel Ther ; 14: 5405-5418, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324038

RESUMO

INTRODUCTION: Controlling the drug release from the dosage form at a definite rate is the main challenge for a successful oral controlled-release drug delivery system. In this study, mini-tablets (MTs) and lipid/polymer nanoparticles (LPNs) of lipid polymer and chitosan in different ratios were designed to encapsulate and control the release time of Amoxicillin (AMX). METHODS: Physical characteristics and in vitro release profiles of both MT and LPN formulations were studied. Antimicrobial activity and oral pharmacokinetics of the optimum MT and LPN formulations in comparison to market tablet were studied in rats. RESULTS: All designed formulations of AMX as MTs and LPNs showed accepted characteristics. MT-6 (Compritol/Chitosan 1:1) showed the greatest retardation among all prepared minitablet preparations, releasing about 79.5% of AMX over 8 h. In contrast, LPN-11 (AMX: Cr 1:3/Chitosan 1 mg/mL) had the slowest drug release, revealing the sustained release of 80.9% within 8 h. The MIC of both optimized tablet formula (MT-6) and LPNs formula (LPN-11) was around two-fold lower than the control against H. pylori. The Cmax of MT-6 and LPN11 were non significantly different compared with the marketed AMX product. While the bioavailability experiment proved that the relative bioavailability of the AMX was 1.85 and 1.8 after the oral use of LPN11 and MT-6, respectively, compared to the market tablet. CONCLUSION: The results verified that both controlled-release mini-tablets and lipid/polymer nanoparticles can be used for sustaining the release and hence improve the bioavailability of amoxicillin.


Assuntos
Amoxicilina/farmacologia , Antibacterianos/farmacologia , Helicobacter pylori/efeitos dos fármacos , Nanopartículas/química , Amoxicilina/química , Amoxicilina/metabolismo , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Disponibilidade Biológica , Liberação Controlada de Fármacos , Cinética , Masculino , Testes de Sensibilidade Microbiana , Nanopartículas/metabolismo , Ratos , Ratos Wistar , Comprimidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...