Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1309963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274211

RESUMO

Introduction: Cornus officinalis sieb. et zucc, a deciduous tree or shrub, is renowned for its "Cornus flesh" fruit, which is widely acknowledged for its medicinal value when matured and dried. Leveraging C. officinalis as a foundational ingredient opens avenues for the development of environmentally friendly health foods, ranging from beverages and jams to preserves and canned products. Packed with diverse bioactive compounds, this species manifests a spectrum of pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, immunomodulatory, neuroprotective, and cardiovascular protective properties. Methods: This study employs CiteSpace visual analysis software and a bibliometric analysis platform, drawing upon the Web of Science (WOS) database for literature spanning the last decade. Through a comprehensive analysis of available literature from WOS and Google Scholar, we present a thorough summary of the health benefits, phytochemistry, active compounds, and pharmacological effects of C. officinalis. Particular emphasis is placed on its potential in developing functional drugs and foods. Results and Discussion: While this review enhances our understanding of C. officinalis as a prospective therapeutic agent, its clinical applicability underscores the need for further research and clinical studies to validate findings and establish safe and effective clinical applications.

2.
Front Nutr ; 9: 1024309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451740

RESUMO

Sturgeons are a type of subcold water fish distributed in eastern Europe, on both sides of the North Pacific, in eastern Asia, in western North America, and on the east coast of North America. Its production capacity is strong, and it is easy to breed. However, the sturgeon industry has the problems of a single product structure, a short industrial chain and poor market sales. In this context, developing the sturgeon industry is crucial to research the nutritional value of sturgeon processing byproducts and developing diversified products. Therefore, this paper summarizes the research on the nutritional value of sturgeon processing byproducts and the current situation of processing and utilization over the past 10 years. First, CiteSpace visual analysis software and the bibliometric analysis platform were used to analyze the status of sturgeon research. The Web of Science (WOS) database was used as the literature source to fit the keywords of sturgeon literature in the past ten years. After excluding the two keywords sturgeon and sturgeon meat, the relevant literature is analyzed and sorted, focusing on the literature in the last five years. Second, a comprehensive and in-depth review (sturgeon, processing, byproducts as the keywords to search Google Scholar and Web of Science) was conducted on the research of the nutritional components contained in sturgeon and the processing of nutritional components in byproducts to provide a reliable reference for the research and processing of the sturgeon industry.

3.
Front Chem ; 10: 1024047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311421

RESUMO

Herein, the novel acacia wood based hierarchical porous activated carbons (AWCs) are easily prepared, low cost and have excellent characterization, such as special biomass nanopores via structural stability and large specific surface areas. Activating agents such as KOH, ZnCl2, and H3PO4 have been used to convert acacia wood carbon into active carbons such as AWC-K, AWC-Z, and AWC-P, respectively, which are named after the activating agent. As a supercapacitor electrode, the AWC-K sample has a high yield was 69.8%, significant specific surface area of 1563.43 m2g-1 and layer thickness of 4.6 mm. Besides that, it showed specific capacitance of 224.92 F g-1 at 0.5 A g-1 in 2 M KOH as electrolyte. In addition, the AWC-K//AWC-K symmetrical supercapacitor device displays high energy density of 23.98 Wh kg-1 at 450 W kg-1 power density with excellent cycling number stability was 93.2% long lifetime of 10,000 cycles using 0.5 M Na2SO4 as electrolyte. The high electrochemistry performance mainly contributed the special biomass pores structure. Therefore, the presented approach opens new avenues in supercapacitor applications to meet energy storage.

4.
Front Chem ; 10: 944793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105311

RESUMO

In the presence of dry ice, a series of graphitic materials with carboxylated edges (ECGs) were synthesized by ball milling graphite for varied times (24, 36, and 46 h). The influence of carboxylation on the physiochemical characteristics and electrochemical performance as effective electrodes for supercapacitors were assessed and compared with pure graphite. Several characterization techniques were employed to investigate into the morphology, texture, microstructure, and modification of the materials. Due to its interconnected micro-mesoporous carbon network, which is vital for fast charge-discharge at high current densities, storing static charges, facilitating electrolyte transport and diffusion, and having excellent rate performance, the ECG-46 electrode among the investigated samples achieved the highest specific capacitance of 223 F g-1 at 0.25 A g-1 current density and an outstanding cycle stability, with capacitance retention of 90.8% for up to 10,000 cycles. Furthermore, the symmetric supercapacitor device based on the ECG-46 showed a high energy density of 19.20 W h kg-1 at 450.00 W kg-1 power density. With these unique features, ball milling of graphitic material in dry ice represents a promising approach to realize porous graphitic material with oxygen functionalities as active electrodes.

5.
Front Nutr ; 9: 1024190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37139102

RESUMO

Asparagus root (AR) is utilized globally as a traditional herbal medicine because it contains various bioactive compounds, such as polyphenols, flavonoids, saponins, and minerals. The composition profiles of AR are strongly affected by its botanical and geographical origins. Although minerals and heavy metals are minor constituents of AR, they play a crucial role in determining its quality and efficacy. A comprehensive classification of AR, its phytochemistry, and its pharmacology were reviewed and interpreted herein. Potentially eligible articles (in English) were identified through an electronic search of the Web of Science database (2010-2022) and Google (2001-2022). We used the primary search term "Asparagus roots" combined with the words "pharmacology," "bioactive compounds," "physicochemical properties," and "health benefits" to find the relevant literature. We screened the titles, keywords, and abstracts of the publications obtained from the database. A full copy of the article was obtained for further assessment if deemed appropriate. Different asparagus species might potentially be used as herbal medicines and functional foods. Phytochemical studies have revealed the presence of various bioactive compounds as valuable secondary metabolites. The dominant class of bioactive compounds in AR is flavonoids. Furthermore, AR displayed significant pharmacological effects, such as antioxidant, antimicrobial, antiviral, anticancer, anti-inflammatory, and antidiabetic effects, as shown in animal and human studies. This review provides a valuable resource to enable a thorough assessment of the profile of Asparagus root as a functional ingredient for the pharmaceutical and food industries. In addition, it is anticipated that this review will provide information to healthcare professionals seeking alternative sources of critical bioactive compounds.

6.
Data Brief ; 30: 105520, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32346566

RESUMO

The presented article reports the preparation and characterization of heterogeneous carbon catalyst enriched with carboxylic group denoted as (ECS) from Eucalyptus as an efficient catalyst for the hydrolysis of woody Eucalyptus biomass. The fabrication process is based on the ball milling of Eucalyptus as a carbon source in the presence of dry ice as an oxidizing agent followed by acidification with the assistance of hydrochloric acid. The data are including the schematic for the full synthesis steps and characterization tools in addition to the thermogravimetric analysis and proton nuclear magnetic resonance analysis for the ECS catalyst. Meanwhile, the catalytic performance of ECS catalyst towards the hydrolysis of Eucalyptus was measured under different temperatures ranged from 160  to 200 °C. The ECS catalyst allowed the selective hydrolysis of Eucalyptus to glucose and xylose, as proved by high-performance liquid chromatography. The data herein are associated with the article entitled " Unveiling one-pot fabrication of scalable and reusable carboxylated heterogeneous carbon-based catalyst from Eucalyptus plant with the assistance of dry Ice for selective hydrolysis of Eucalyptus Biomass'' [1].

7.
Analyst ; 145(6): 2398-2404, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32039409

RESUMO

The metal-organic framework (MOF-74) series has the most open metal sites. The metal ions have different bonding strengths with the ligand in MOF-74 and the bond of the ligand can be successively broken to obtain highly active heteroparticles by controlling the temperature, which is difficult to achieve using traditional methods. Magnetic NiCo/Fe3O4-MOF-74, which is fabricated using trimetallic NiCoFe-MOF-74 as a precursor, is simple and rational in comparison with the traditional magnetic core and tunable MOF shell hybrid composites that are formed using a step-by-step assembly strategy. After thermal treatment under a specific atmosphere, NiCo/Fe3O4-MOF-74 shows higher stability, strong magnetism and more active metal sites compared to the original MOF. NiCo/Fe3O4-MOF-74 shows excellent enrichment capability for the removal of tetracycline, with a high removal efficiency that reached 94.1% within 5 min, which is much higher than that of NiCoFe-MOF-74. The main interaction between the adsorbent and analyte is most likely attributed to the open metal sites that can form a stable metal-ligand with the antibiotic molecules. Furthermore, the material can be reused five times without considerable loss. The prepared material has potential applications for removing antibiotics with high efficiency at low cost. Therefore, the experiments described in this study provide a route to a broad class of MOF-based materials for detecting organic contaminants.


Assuntos
Óxido Ferroso-Férrico/química , Estruturas Metalorgânicas/química , Extração em Fase Sólida/métodos , Tetraciclina/isolamento & purificação , Adsorção , Fenômenos Magnéticos , Tetraciclina/química , Água/química
8.
J Chromatogr A ; 1593: 1-8, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-30765128

RESUMO

Recently, water pollution caused by antibiotics is rapidly increasing. Thus, developing efficient, fast and sensitive detection methods for environmental antibiotics monitoring are still remaining elusive. Herein, a method for antibiotics analysis including lecofloxacin, pazcofloxacin and gatifloxacin in water by high performance liquid chromatography (HPLC) using molybdenum disulfide-graphene oxide-supported magnetic nanoparticles (Fe3O4/GO/MoS2) as the adsorbent of magnetic solid-phase extraction was developed. The as-prepared magnetic Fe3O4/GO/MoS2 nanocomposite exhibited good enrichment capability toward fluoroquinolone antibiotics and the analytes were absorbed within a short time ca. 2 min. The main drive forces of Fe3O4/GO/MoS2 nanocomposite and antibiotics were most likely attributed to hydrogen bonding and electrostatic attraction. A sensitive and effective MSPE-HPLC method was developed with low detection limits (LODs) ranging from 0.25 to 0.50 ng mL-1. The recoveries obtained from the analysis of water sample were between 85.6% and 106.1% with relative standard deviations (RSDs, n = 5) lower than 9.5%. The developed method has a good potential for the analysis of organic contaminants in water with low cost and high sensitivity. Therefore, this finding is a promising strategy for designing high efficiency and fast antibiotics detection system.


Assuntos
Antibacterianos , Cromatografia Líquida de Alta Pressão , Dissulfetos/química , Fluoroquinolonas , Grafite/química , Nanopartículas de Magnetita/química , Molibdênio/química , Antibacterianos/análise , Antibacterianos/química , Antibacterianos/isolamento & purificação , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Fluoroquinolonas/análise , Fluoroquinolonas/química , Fluoroquinolonas/isolamento & purificação , Limite de Detecção , Reprodutibilidade dos Testes , Água
9.
Nanoscale Adv ; 1(3): 1207-1214, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36133190

RESUMO

Nitrite ions (NO2 -), as one of the important inorganic anions, exhibit considerable effects towards the environment and human health. Moreover, over intake of this anion may cause dangerous diseases. Herein, we successfully fabricated silver nanoparticles (AgNPs) using 4-amino-5-hydroxynaphthalene-2, 7-disulphonic acid monosodium salt (AHNDMS) and functionalized them with p-aminobenzoic acid (PABA), and used the functionalised AgNPs as a sensitive and selective colorimetric sensor for nitrite ions. The structure of the as-prepared pure AgNPs was experimentally characterized by different characterizations methods, namely, UV-vis, FT-IR, CV, DPVs, SEM, TEM, and XRD. Additionally, the nitrite ion sensitively and selectively changes the brownish yellow color of the dispersed AgNPs to pinkish red, indicating aggregation of AgNPs, with a detection limit of 0.016 ppm (0.348 µM) and 0.0069 ppm (0.149 µM) by the naked-eye and by UV-vis spectroscopy, respectively. The color change suggested that the aggregation of AgNPs was induced by nitrite-selective diazo-coupling. UV-vis spectra show the disappearance of the absorbance at 474 nm and appearance of a new peak at 532 nm, presumably due to the conversion of AgNPs to silver ions. Moreover, the studies of interference in the proposed sensor confirm its selectivity in the presence of anions as well as cations. Furthermore, linearity was observed between the absorption and the concentration of nitrite ions. More importantly, the proposed sensor was practicably applied for the determination of nitrite in different water samples, such as distilled water, river water, and tap water.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 210: 398-404, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30522025

RESUMO

Immoderate intake of nitrite (NO2-) is deleterious human health and may result in causing dangerous diseases. In this study, nitrite detection system was successfully fabricated based on a unique diazo-coupling reaction of p­Aminobenzoic acid (PABA) and phloroglucinol (1, 3, 5­trihydroxybenzene). Upon the presence of NO2- in an acid medium, p­Aminobenzoic acid could not only form diazonium ion easily but also couple with p­Aminobenzoic acid, and results forming yellow water-soluble azo dye that shows maximum absorption at 434 nm. Under the further accurate determination condition, such as acid concentration, amount of reagents and time required, the naked-eye detection of NO2- showed excellent selectivity in compared with some anions. Especially, diazotization and coupling reaction proposed here is very fast and control of pH and temperature are unnecessary. Moreover, the color is stable for several days and Beer's law is obeyed over a wide range. Reliable detection can be made in the range of 0.05 to 1 p.p.m. of nitrite ion. Detection limit was calculated to be 0.024 p.p.m. (0.52 µâ€¯M) by UV-visible spectroscopy and 0.05 p.p.m. (1.09 µâ€¯M) by naked-eye. By using an electrochemical method, IR, SEM, and 1HNMR, the sensing mechanism can be easily verified. More importantly the proposed method was successfully applied for the determination of nitrite in a real water sample.


Assuntos
Ácido 4-Aminobenzoico/química , Colorimetria/métodos , Nitritos/análise , Floroglucinol/química , Ácido Clorídrico/química , Concentração de Íons de Hidrogênio , Indicadores e Reagentes/química , Limite de Detecção , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Nitritos/química , Rios/química , Sensibilidade e Especificidade , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...