Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurooncol Adv ; 5(1): vdad134, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047207

RESUMO

Background: In recent years, drug combinations have become increasingly popular to improve therapeutic outcomes in various diseases, including difficult to cure cancers such as the brain cancer glioblastoma. Assessing the interaction between drugs over time is critical for predicting drug combination effectiveness and minimizing the risk of therapy resistance. However, as viability readouts of drug combination experiments are commonly performed as an endpoint where cells are lysed, longitudinal drug-interaction monitoring is currently only possible through combined endpoint assays. Methods: We provide a method for massive parallel monitoring of drug interactions for 16 drug combinations in 3 glioblastoma models over a time frame of 18 days. In our assay, viabilities of single neurospheres are to be estimated based on image information taken at different time points. Neurosphere images taken on the final day (day 18) were matched to the respective viability measured by CellTiter-Glo 3D on the same day. This allowed to use of machine learning to decode image information to viability values on day 18 as well as for the earlier time points (on days 8, 11, and 15). Results: Our study shows that neurosphere images allow us to predict cell viability from extrapolated viabilities. This enables to assess of the drug interactions in a time window of 18 days. Our results show a clear and persistent synergistic interaction for several drug combinations over time. Conclusions: Our method facilitates longitudinal drug-interaction assessment, providing new insights into the temporal-dynamic effects of drug combinations in 3D neurospheres which can help to identify more effective therapies against glioblastoma.

2.
Neurooncol Adv ; 5(1): vdad073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455945

RESUMO

Background: IDH-wildtype glioblastoma (GBM) is a highly malignant primary brain tumor with a median survival of 15 months after standard of care, which highlights the need for improved therapy. Personalized combination therapy has shown to be successful in many other tumor types and could be beneficial for GBM patients. Methods: We performed the largest drug combination screen to date in GBM, using a high-throughput effort where we selected 90 drug combinations for their activity onto 25 patient-derived GBM cultures. 43 drug combinations were selected for interaction analysis based on their monotherapy efficacy and were tested in a short-term (3 days) as well as long-term (18 days) assay. Synergy was assessed using dose-equivalence and multiplicative survival metrics. Results: We observed a consistent synergistic interaction for 15 out of 43 drug combinations on patient-derived GBM cultures. From these combinations, 11 out of 15 drug combinations showed a longitudinal synergistic effect on GBM cultures. The highest synergies were observed in the drug combinations Lapatinib with Thapsigargin and Lapatinib with Obatoclax Mesylate, both targeting epidermal growth factor receptor and affecting the apoptosis pathway. To further elaborate on the apoptosis cascade, we investigated other, more clinically relevant, apoptosis inducers and observed a strong synergistic effect while combining Venetoclax (BCL targeting) and AZD5991 (MCL1 targeting). Conclusions: Overall, we have identified via a high-throughput drug screening several new treatment strategies for GBM. Moreover, an exceptionally strong synergistic interaction was discovered between kinase targeting and apoptosis induction which is suitable for further clinical evaluation as multi-targeted combination therapy.

3.
Drug Resist Updat ; 40: 17-24, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30439622

RESUMO

Glioblastoma is the most common and malignant form of brain cancer, for which the standard treatment is maximal surgical resection, radiotherapy and chemotherapy. Despite these interventions, mean overall survival remains less than 15 months, during which extensive tumor infiltration throughout the brain occurs. The resulting metastasized cells in the brain are characterized by chemotherapy resistance and extensive intratumoral heterogeneity. An orthogonal approach attacking both intracellular resistance mechanisms as well as intercellular heterogeneity is necessary to halt tumor progression. For this reason, we established the WINDOW Consortium (Window for Improvement for Newly Diagnosed patients by Overcoming disease Worsening), in which we are establishing a strategy for rational selection and development of effective therapies against glioblastoma. Here, we overview the many challenges posed in treating glioblastoma, including selection of drug combinations that prevent therapy resistance, the need for drugs that have improved blood brain barrier penetration and strategies to counter heterogeneous cell populations within patients. Together, this forms the backbone of our strategy to attack glioblastoma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...