Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 32(9): 106, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426879

RESUMO

Combination of bioactive material such as hydroxyapatite (HAp) with antibacterial agents would have great potential to be used as bone implant materials to avert possible bacterial infection that can lead to implant-associated diseases. The present study aimed to develop an antibacterial silver nanoparticle-decorated hydroxyapatite (HAp/AgNPs) nanocomposite using chemical reduction and thermal calcination approaches. In this work, natural HAp that was extracted from chicken bone wastes is used as support matrix for the deposition of silver nanoparticles (AgNPs) to produce HAp/AgNPs nanocomposite. XRD, FESEM-EDX, HRTEM, and XPS analyses confirmed that spherical AgNPs were successfully synthesized and deposited on the surface of HAp particles, and the amount of AgNPs adhered on the HAp surface increased with increasing AgNO3 concentration used. The synthesized HAp/AgNPs nanocomposites demonstrated strong antibacterial activity against Staphylococcus aureus bacteria, where the antibacterial efficiency is relied on the amount and size of deposited AgNPs. In addition, the in vitro bioactivity examination in Hank's balanced salt solution showed that more apatite were grown on the surface of HAp/AgNPs nanocomposite when AgNO3 concentration used >1 wt.%. Such nanocomposite with enhanced bioactivity and antibacterial properties emerged as a promising biomaterial to be applied for dentistry and orthopedic implantology.


Assuntos
Antibacterianos , Materiais Revestidos Biocompatíveis/síntese química , Nanopartículas Metálicas/química , Prata/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Substitutos Ósseos/síntese química , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Galinhas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Teste de Materiais , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Nanocompostos/química , Próteses e Implantes , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
2.
J Mater Sci Mater Med ; 31(5): 45, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32367409

RESUMO

Recently, surface engineered biomaterials through surface modification are extensively investigated due to its potential to enhance cellular homing and migration which contributes to a successful drug delivery process. This study is focused on osteoblasts response towards surface engineered using a simple sodium hydroxide (NaOH) hydrolysis and growth factors conjugated poly(lactic acid) (PLA) microspheres. In this study, evaluation of the relationship of NaOH concentration with the molecular weight changes and surface morphology of PLA microspheres specifically wall thickness and porosity prior to in vitro studies was investigated. NaOH hydrolysis of 0.1 M, 0.3 M and 0.5 M were done to introduce hydrophilicity on the PLA prior to conjugation with basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF). Morphology changes showed that higher concentration of NaOH could accelerate the hydrolysis process as the highest wall thickness was observed at 0.5 M NaOH with ~3.52 µm. All surface modified and growth factors conjugated PLA microspheres wells enhanced the migration of the cells during wound healing process as wound closure was 100% after 3 days of treatment. Increase in hydrophilicity of the surface engineered and growth factors conjugated PLA microspheres provides favorable surface for cellular attachment of osteoblast, which was reflected by positive DAPI staining of the cells' nucleus. Surface modified and growth factors conjugated PLA microspheres were also able to enhance the capability of the PLA in facilitating the differentiation process of mesenchymal stem cells (MSCs) into osteogenic lineage since only positive stain was observed on surface engineered and growth factors conjugated PLA microspheres. These results indicated that the surface engineered and growth factors conjugated PLA microspheres were non-toxic for biological environments and the improved hydrophilicity made them a potential candidate as a drug delivery vehicle as the cells can adhere, attach and proliferate inside it.


Assuntos
Movimento Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Poliésteres/química , Materiais Biocompatíveis , Células da Medula Óssea , Adesão Celular , Diferenciação Celular , Células Cultivadas , Cromatografia em Gel , Humanos , Teste de Materiais , Microesferas , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...