Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0346222, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36847511

RESUMO

This is the first detailed characterization of the microbiota and chemistry of different arid habitats from the State of Qatar. Analysis of bacterial 16S rRNA gene sequences showed that in aggregate, the dominant microbial phyla were Actinobacteria (32.3%), Proteobacteria (24.8%), Firmicutes (20.7%), Bacteroidetes (6.3%), and Chloroflexi (3.6%), though individual soils varied widely in the relative abundances of these and other phyla. Alpha diversity measured using feature richness (operational taxonomic units [OTUs]), Shannon's entropy, and Faith's phylogenetic diversity (PD) varied significantly between habitats (P = 0.016, P = 0.016, and P = 0.015, respectively). Sand, clay, and silt were significantly correlated with microbial diversity. Highly significant negative correlations were also seen at the class level between both classes Actinobacteria and Thermoleophilia (phylum Actinobacteria) and total sodium (R = -0.82 and P = 0.001 and R = -0.86, P = 0.000, respectively) and slowly available sodium (R = -0.81 and P = 0.001 and R = -0.8 and P = 0.002, respectively). Additionally, class Actinobacteria also showed significant negative correlation with sodium/calcium ratio (R = -0.81 and P = 0.001). More work is needed to understand if there is a causal relationship between these soil chemical parameters and the relative abundances of these bacteria. IMPORTANCE Soil microbes perform a multitude of essential biological functions, including organic matter decomposition, nutrient cycling, and soil structure preservation. Qatar is one of the most hostile and fragile arid environments on earth and is expected to face a disproportionate impact of climate change in the coming years. Thus, it is critical to establish a baseline understanding of microbial community composition and to assess how soil edaphic factors correlate with microbial community composition in this region. Although some previous studies have quantified culturable microbes in specific Qatari habitats, this approach has serious limitations, as in environmental samples, approximately only 0.5% of cells are culturable. Hence, this method vastly underestimates natural diversity within these habitats. Our study is the first to systematically characterize the chemistry and total microbiota associated with different habitats present in the State of Qatar.

2.
PLoS One ; 11(9): e0161836, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27655399

RESUMO

This study represents the first characterization of sand microbiota in migrating barchan sand dunes. Bacterial communities were studied through direct counts and cultivation, as well as 16S rRNA gene and metagenomic sequence analysis to gain an understanding of microbial abundance, diversity, and potential metabolic capabilities. Direct on-grain cell counts gave an average of 5.3 ± 0.4 x 105 cells g-1 of sand. Cultured isolates (N = 64) selected for 16S rRNA gene sequencing belonged to the phyla Actinobacteria (58%), Firmicutes (27%) and Proteobacteria (15%). Deep-sequencing of 16S rRNA gene amplicons from 18 dunes demonstrated a high relative abundance of Proteobacteria, particularly enteric bacteria, and a dune-specific-pattern of bacterial community composition that correlated with dune size. Shotgun metagenome sequences of two representative dunes were analyzed and found to have similar relative bacterial abundance, though the relative abundances of eukaryotic, viral and enterobacterial sequences were greater in sand from the dune closer to a camel-pen. Functional analysis revealed patterns similar to those observed in desert soils; however, the increased relative abundance of genes encoding sporulation and dormancy are consistent with the dune microbiome being well-adapted to the exceptionally hyper-arid Qatari desert.

4.
Genome Announc ; 4(2)2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26988039

RESUMO

Urease-producing microbes are of significance due to their potential application in biocement production. Sporosarcina koreensis Q1 is a urease-producing bacterium belonging to the phylum Firmicutes. Here, we present the draft whole-genome sequence of S. koreensis Q1, isolated from a barchan sand dune in Qatar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...