Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Radiat Isot ; 199: 110785, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37300928

RESUMO

Oropharyngeal cancer (OPC) comprises a group of various malignant tumours that grow in the throat, larynx, mouth, sinuses, and nose. THE RESEARCH AIMS: to investigate the performance of the OPC VMAT model by comparison to clinical plans in terms of dosimetric parameters and normal tissue complication probabilities. PURPOSE: Tune the model which at least matches the performance of clinical created photon treatment plans and analyse and find the most appropriate strategic plan scheme for OPC. METHODS AND MATERIALS: The machine learning (ML) plans are compared to the reference plans (clinical plans) based on dose constraints and target coverage. VMAT oropharynx ML model of Raystation development 11B version (non-clinical) was used. A model was trained by using different modalities. A different strategy of machine learning and clinical plans was performed for five patients. The dose Prescribed for OPC is 70 Gy, 2 Gy per fraction (2Gy/Fx). The PTV was derived for the primary tumour and secondary tumour, PTV+7000 cGy and PTV_5425 cGy volumetric modulated arc therapy (VMAT) were used with beams performing a full 360° rotation around the single isocenter. RESULTS: Organs at risk were observed that the volume of L-Eye in clinical plan (AF) for the case1 treatment planning could be successfully used ensuring efficiency and lower than MLVMAT and MLVMAT-org plans were 372 cGy, 697 cGy and 667 cGy respectively, while showed case2, case3, case4 and case5 are better to protect the critical organs in ML plan compare with a clinical plan. DHI for the PTV-7000 and PTV-5425 is between 1 and 1.34, While DCI for PTV-7000 and PTV-5425 is between 0.98 and 1.


Assuntos
Neoplasias Orofaríngeas , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Orofaríngeas/diagnóstico por imagem , Neoplasias Orofaríngeas/radioterapia
2.
Materials (Basel) ; 15(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888232

RESUMO

This paper shows the novel approach of Taguchi-Based Grey Relational Analysis of Ti6Al4V Machining parameter. Ti6Al4V metal matrix composite has been fabricated using the powder metallurgy route. Here, all the components of TI6Al4V machining forces, including longitudinal force (Fx), radial force (Fy), tangential force (Fz), surface roughness and material removal rate (MRR) are measured during the facing operation. The effect of three process parameters, cutting speed, tool feed and cutting depth, is being studied on the matching responses. Orthogonal design of experiment (Taguchi L9) has been adopted to execute the process parameters in each level. To validate the process output parameters, the Grey Relational Analysis (GRA) optimization approach was applied. The percentage contribution of machining parameters to the parameter of response performance was interpreted through variance analysis (ANOVA). Through the GRA process, the emphasis was on the fact that for TI6Al4V metal matrix composite among all machining parameters, tool feed serves as the highest contribution to the output responses accompanied by the cutting depth with the cutting speed in addition. From optimal testing, it is found that for minimization of machining forces, maximization of MRR and minimization of Ra, the best combinations of input parameters are the 2nd stage of cutting speed (175 m/min), the 3rd stage of feed (0.25 mm/edge) as well as the 2nd stage of cutting depth (1.2 mm). It is also found that hardness of Ti6Al4V MMC is 59.4 HRA and composition of that material remain the same after milling operation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...