Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38534514

RESUMO

This paper presents a novel U-Net model incorporating a hybrid attention mechanism for automating the segmentation of sub-retinal layers in Optical Coherence Tomography (OCT) images. OCT is an ophthalmology tool that provides detailed insights into retinal structures. Manual segmentation of these layers is time-consuming and subjective, calling for automated solutions. Our proposed model combines edge and spatial attention mechanisms with the U-Net architecture to improve segmentation accuracy. By leveraging attention mechanisms, the U-Net focuses selectively on image features. Extensive evaluations using datasets demonstrate that our model outperforms existing approaches, making it a valuable tool for medical professionals. The study also highlights the model's robustness through performance metrics such as an average Dice score of 94.99%, Adjusted Rand Index (ARI) of 97.00%, and Strength of Agreement (SOA) classifications like "Almost Perfect", "Excellent", and "Very Strong". This advanced predictive model shows promise in expediting processes and enhancing the precision of ocular imaging in real-world applications.

2.
Sensors (Basel) ; 23(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299906

RESUMO

Human behavior recognition technology is widely adopted in intelligent surveillance, human-machine interaction, video retrieval, and ambient intelligence applications. To achieve efficient and accurate human behavior recognition, a unique approach based on the hierarchical patches descriptor (HPD) and approximate locality-constrained linear coding (ALLC) algorithm is proposed. The HPD is a detailed local feature description, and ALLC is a fast coding method, which makes it more computationally efficient than some competitive feature-coding methods. Firstly, energy image species were calculated to describe human behavior in a global manner. Secondly, an HPD was constructed to describe human behaviors in detail through the spatial pyramid matching method. Finally, ALLC was employed to encode the patches of each level, and a feature coding with good structural characteristics and local sparsity smoothness was obtained for recognition. The recognition experimental results on both Weizmann and DHA datasets demonstrated that the accuracy of five energy image species combined with HPD and ALLC was relatively high, scoring 100% in motion history image (MHI), 98.77% in motion energy image (MEI), 93.28% in average motion energy image (AMEI), 94.68% in enhanced motion energy image (EMEI), and 95.62% in motion entropy image (MEnI).


Assuntos
Algoritmos , Reconhecimento Automatizado de Padrão , Humanos , Reconhecimento Automatizado de Padrão/métodos
3.
Bioengineering (Basel) ; 10(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37106594

RESUMO

Optical coherence tomography (OCT) is a noninvasive imaging technique that provides high-resolution cross-sectional retina images, enabling ophthalmologists to gather crucial information for diagnosing various retinal diseases. Despite its benefits, manual analysis of OCT images is time-consuming and heavily dependent on the personal experience of the analyst. This paper focuses on using machine learning to analyse OCT images in the clinical interpretation of retinal diseases. The complexity of understanding the biomarkers present in OCT images has been a challenge for many researchers, particularly those from nonclinical disciplines. This paper aims to provide an overview of the current state-of-the-art OCT image processing techniques, including image denoising and layer segmentation. It also highlights the potential of machine learning algorithms to automate the analysis of OCT images, reducing time consumption and improving diagnostic accuracy. Using machine learning in OCT image analysis can mitigate the limitations of manual analysis methods and provide a more reliable and objective approach to diagnosing retinal diseases. This paper will be of interest to ophthalmologists, researchers, and data scientists working in the field of retinal disease diagnosis and machine learning. By presenting the latest advancements in OCT image analysis using machine learning, this paper will contribute to the ongoing efforts to improve the diagnostic accuracy of retinal diseases.

4.
J Acoust Soc Am ; 132(4): 2313-24, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23039428

RESUMO

This paper applies root locus theory to develop a graphical tool for the analysis and design of adaptive active noise control systems. It is shown that the poles of the adaptation process performed in these systems move on typical trajectories in the z-plane as the adaptation step-size varies. Based on this finding, the dominant root of the adaptation process and its trajectory can be determined. The first contribution of this paper is formulating parameters of the adaptation process root locus. The next contribution is introducing a mechanism for modifying the trajectory of the dominant root in the root locus. This mechanism creates a single open loop zero in the original root locus. It is shown that appropriate localization of this zero can cause the dominant root of the locus to be pushed toward the origin, and thereby the adaptation process becomes faster. The validity of the theoretical findings is confirmed in an experimental setup which is implemented using real-time multi-threading and multi-core processing techniques.


Assuntos
Acústica , Modelos Teóricos , Ruído/prevenção & controle , Acústica/instrumentação , Algoritmos , Modelos Lineares , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador
5.
J Acoust Soc Am ; 129(1): 173-84, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21303000

RESUMO

The stability analysis of the adaptation process, performed by the filtered-x least mean square algorithm on weights of active noise controllers, has not been fully investigated. The main contribution of this paper is conducting a theoretical stability analysis for this process without utilizing commonly used simplifying assumptions regarding the secondary electro-acoustic channel. The core of this analysis is based on the root locus theory. The general rules for constructing the root locus plot of the adaptation process are derived by obtaining root locus parameters, including start points, end points, asymptote lines, and breakaway points. The conducted analysis leads to the derivation of a general upper-bound for the adaptation step-size beyond which the mean weight vector of the active noise controller becomes unstable. Also, this analysis yields the optimum step-size for which the adaptive active noise controller has its fastest dynamic performance. The proposed upper-bound and optimum values apply to general secondary electro-acoustic channels, unlike the commonly used ones which apply to only pure delay channels. The results are found to agree very well with those obtained from numerical analyses and computer simulation experiments.


Assuntos
Acústica , Modelos Teóricos , Ruído/prevenção & controle , Acústica/instrumentação , Algoritmos , Simulação por Computador , Desenho de Equipamento , Análise dos Mínimos Quadrados , Análise Numérica Assistida por Computador , Fatores de Tempo , Transdutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...