Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 15(12): e51355, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38292964

RESUMO

Protein S (PS) deficiency is widely recognized for its connection to venous thromboembolism risk. However, the relation between PS deficiency and arterial thrombotic events (ATEs) remains uncertain. Here, we report a patient who experienced an ATE with a family history of PS deficiency. We highlight an attention to the issues related to the management of arterial thrombotic events and discuss the potential use of antiplatelet therapy as a treatment option for a specific group of patients diagnosed with PS deficiency.

2.
PLoS One ; 14(12): e0225518, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31790457

RESUMO

This paper proposes an emergency Traffic Adaptive MAC (eTA-MAC) protocol for WBANs based on Prioritization. The main advantage of the protocol is to provide traffic ranking through a Traffic Class Prioritization-based slotted-Carrier Sense Multiple Access/Collision Avoidance (TCP-CSMA/CA) scheme. The emergency traffic is handled through Emergency Traffic Class Provisioning-based slotted-CSMA/CA (ETCP-CSMA/CA) scheme. The emergency-based traffic adaptivity is provided through Emergency-based Traffic Adaptive slotted-CSMA/CA (ETA-CSMA/CA) scheme. The TCP-CSMA/CA scheme assigns a distinct, minimized and prioritized backoff period range to each traffic class in every backoff during channel access in Contention Access Period (CAP). The ETCP-CSMA/CA scheme delivers the sporadic emergency traffic that occurs at a single or multiple BMSN(s) instantaneously, with minimum delay and packet loss. It does this while being aware of normal traffic in the CAP. Then, the ETA-CSMA/CA scheme creates a balance between throughput and energy in the sporadic emergency situation with energy preservation of normal traffic BMSNs. The proposed protocol is evaluated using NS-2 simulator. The results indicate that the proposed protocol is better than the existing Medium Access Control (MAC) protocols by 86% decrease in packet delivery delay, 61% increase in throughput, and a 76% decrease in energy consumption.


Assuntos
Sistemas de Comunicação entre Serviços de Emergência , Tecnologia de Sensoriamento Remoto/métodos , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio/instrumentação , Algoritmos , Humanos , Tecnologia de Sensoriamento Remoto/instrumentação , Fatores de Tempo
3.
Sensors (Basel) ; 19(3)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678121

RESUMO

This paper proposes an improved Traffic Class Prioritization based Carrier Sense Multiple Access/Collision Avoidance (TCP-CSMA/CA) scheme for prioritized channel access to heterogenous-natured Bio-Medical Sensor Nodes (BMSNs) for IEEE 802.15.4 Medium Access Control (MAC) in intra-Wireless Body Area Networks (WBANs). The main advantage of the scheme is to provide prioritized channel access to heterogeneous-natured BMSNs of different traffic classes with reduced packet delivery delay, packet loss, and energy consumption, and improved throughput and packet delivery ratio (PDR). The prioritized channel access is achieved by assigning a distinct, minimized and prioritized backoff period range to each traffic class in every backoff during contention. In TCP-CSMA/CA, the BMSNs are distributed among four traffic classes based on the existing patient's data classification. The Backoff Exponent (BE) starts from 1 to remove the repetition of the backoff period range in the third, fourth, and fifth backoffs. Five moderately designed backoff period ranges are proposed to assign a distinct, minimized, and prioritized backoff period range to each traffic class in every backoff during contention. A comprehensive verification using NS-2 was carried out to determine the performance of the TCP-CSMA/CA in terms of packet delivery delay, throughput, PDR, packet loss ratio (PLR) and energy consumption. The results prove that the proposed TCP-CSMA/CA scheme performs better than the IEEE 802.15.4 based PLA-MAC, eMC-MAC, and PG-MAC as it achieves a 47% decrease in the packet delivery delay and a 63% increase in the PDR.

4.
Sensors (Basel) ; 18(10)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261628

RESUMO

Recent technological advancement in wireless communication has led to the invention of wireless body area networks (WBANs), a cutting-edge technology in healthcare applications. WBANs interconnect with intelligent and miniaturized biomedical sensor nodes placed on human body to an unattended monitoring of physiological parameters of the patient. These sensors are equipped with limited resources in terms of computation, storage, and battery power. The data communication in WBANs is a resource hungry process, especially in terms of energy. One of the most significant challenges in this network is to design energy efficient next-hop node selection framework. Therefore, this paper presents a green communication framework focusing on an energy aware link efficient routing approach for WBANs (ELR-W). Firstly, a link efficiency-oriented network model is presented considering beaconing information and network initialization process. Secondly, a path cost calculation model is derived focusing on energy aware link efficiency. A complete operational framework ELR-W is developed considering energy aware next-hop link selection by utilizing the network and path cost model. The comparative performance evaluation attests the energy-oriented benefit of the proposed framework as compared to the state-of-the-art techniques. It reveals a significant enhancement in body area networking in terms of various energy-oriented metrics under medical environments.

5.
J Med Syst ; 41(6): 93, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28466452

RESUMO

Recently, Wireless Body Area Network (WBAN) has witnessed significant attentions in research and product development due to the growing number of sensor-based applications in healthcare domain. Design of efficient and effective Medium Access Control (MAC) protocol is one of the fundamental research themes in WBAN. Static on-demand slot allocation to patient data is the main approach adopted in the design of MAC protocol in literature, without considering the type of patient data specifically the level of severity on patient data. This leads to the degradation of the performance of MAC protocols considering effectiveness and traffic adjustability in realistic medical environments. In this context, this paper proposes a Traffic Priority-Aware MAC (TraPy-MAC) protocol for WBAN. It classifies patient data into emergency and non-emergency categories based on the severity of patient data. The threshold value aided classification considers a number of parameters including type of sensor, body placement location, and data transmission time for allocating dedicated slots patient data. Emergency data are not required to carry out contention and slots are allocated by giving the due importance to threshold value of vital sign data. The contention for slots is made efficient in case of non-emergency data considering threshold value in slot allocation. Moreover, the slot allocation to emergency and non-emergency data are performed parallel resulting in performance gain in channel assignment. Two algorithms namely, Detection of Severity on Vital Sign data (DSVS), and ETS Slots allocation based on the Severity on Vital Sign (ETS-SVS) are developed for calculating threshold value and resolving the conflicts of channel assignment, respectively. Simulations are performed in ns2 and results are compared with the state-of-the-art MAC techniques. Analysis of results attests the benefit of TraPy-MAC in comparison with the state-of-the-art MAC in channel assignment in realistic medical environments.


Assuntos
Tecnologia sem Fio , Algoritmos
6.
J Med Syst ; 41(4): 69, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28285459

RESUMO

Recently, Artificial Intelligence (AI) has been used widely in medicine and health care sector. In machine learning, the classification or prediction is a major field of AI. Today, the study of existing predictive models based on machine learning methods is extremely active. Doctors need accurate predictions for the outcomes of their patients' diseases. In addition, for accurate predictions, timing is another significant factor that influences treatment decisions. In this paper, existing predictive models in medicine and health care have critically reviewed. Furthermore, the most famous machine learning methods have explained, and the confusion between a statistical approach and machine learning has clarified. A review of related literature reveals that the predictions of existing predictive models differ even when the same dataset is used. Therefore, existing predictive models are essential, and current methods must be improved.


Assuntos
Inteligência Artificial , Atenção à Saúde/organização & administração , Modelos Teóricos , Humanos , Aprendizado de Máquina
7.
PLoS One ; 11(6): e0156885, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27285146

RESUMO

Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks.


Assuntos
Algoritmos , Redes de Comunicação de Computadores , Segurança Computacional , Tecnologia sem Fio , Comunicação , Redes de Comunicação de Computadores/normas , Segurança Computacional/normas , Simulação por Computador , Desastres , Análise de Elementos Finitos , Humanos , Disseminação de Informação/métodos , Militares , Modelos Teóricos , Tecnologia sem Fio/normas
9.
Pak J Pharm Sci ; 28(5): 1801-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26408877

RESUMO

The Leukocytes are differentiated from each other on the basis of their nuclei, demanded in many Medical studies, especially in all types of Leukemia by the Hematologists to note the disorder caused by specific type of Leukocyte. Leukemia is a life threatening disease. The work for diagnosing is manually carried out by the Hematologists involving much labor, time and human errors. The problems mentioned are easily addressed through computer vision techniques, but still accuracy and efficiency are demanded in terms of the basic and challenging step segmentation of Leukocyte's nuclei. The underlying study proposed better method in terms of accuracy and efficiency by designing a dynamic convolution filter for boosting low intensity values in the separated green channel of an RGB image and suppressing the high values in the same channel. The high values in the green channel become 255 (background) while the nuclei always have low values in the green channel and thus clearly appear as foreground. The proposed technique is tested on 365 images achieving an overall accuracy of 95.89%, while improving the efficiency by 10%. The proposed technique achieved its targets in a realistic way by improving the accuracy as well as the efficiency and both are highly required in the area.


Assuntos
Núcleo Celular/ultraestrutura , Leucócitos/ultraestrutura , Humanos
10.
J Med Syst ; 39(9): 91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26242749

RESUMO

A significant proportion of the worldwide population is of the elderly people living with chronic diseases that result in high health-care cost. To provide continuous health monitoring with minimal health-care cost, Wireless Body Sensor Networks (WBSNs) has been recently emerged as a promising technology. Depending on nature of sensory data, WBSNs might require a high level of Quality of Service (QoS) both in terms of delay and reliability during data reporting phase. In this paper, we propose a data-centric routing for intra WBSNs that adapts the routing strategy in accordance with the nature of data, temperature rise issue of the implanted bio-medical sensors due to electromagnetic wave absorption, and high and dynamic path loss caused by postural movement of human body and in-body wireless communication. We consider the network models both with and without relay nodes in our simulations. Due to the multi-facet routing strategy, the proposed data-centric routing achieves better performance in terms of delay, reliability, temperature rise, and energy consumption when compared with other state-of-the-art.


Assuntos
Temperatura Corporal , Monitorização Ambulatorial/instrumentação , Tecnologia sem Fio , Algoritmos , Radiação Eletromagnética , Ingestão de Energia , Humanos , Modelos Teóricos , Reprodutibilidade dos Testes
11.
Sensors (Basel) ; 14(12): 22342-71, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25429415

RESUMO

Geographic routing is one of the most investigated themes by researchers for reliable and efficient dissemination of information in Vehicular Ad Hoc Networks (VANETs). Recently, different Geographic Distance Routing (GEDIR) protocols have been suggested in the literature. These protocols focus on reducing the forwarding region towards destination to select the Next Hop Vehicles (NHV). Most of these protocols suffer from the problem of elevated one-hop link disconnection, high end-to-end delay and low throughput even at normal vehicle speed in high vehicle density environment. This paper proposes a Geographic Distance Routing protocol based on Segment vehicle, Link quality and Degree of connectivity (SLD-GEDIR). The protocol selects a reliable NHV using the criteria segment vehicles, one-hop link quality and degree of connectivity. The proposed protocol has been simulated in NS-2 and its performance has been compared with the state-of-the-art protocols: P-GEDIR, J-GEDIR and V-GEDIR. The empirical results clearly reveal that SLD-GEDIR has lower link disconnection and end-to-end delay, and higher throughput as compared to the state-of-the-art protocols. It should be noted that the performance of the proposed protocol is preserved irrespective of vehicle density and speed.

12.
Sensors (Basel) ; 14(2): 2510-48, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24504107

RESUMO

Recently sink mobility has been exploited in numerous schemes to prolong the lifetime of wireless sensor networks (WSNs). Contrary to traditional WSNs where sensory data from sensor field is ultimately sent to a static sink, mobile sink-based approaches alleviate energy-holes issues thereby facilitating balanced energy consumption among nodes. In mobility scenarios, nodes need to keep track of the latest location of mobile sinks for data delivery. However, frequent propagation of sink topological updates undermines the energy conservation goal and therefore should be controlled. Furthermore, controlled propagation of sinks' topological updates affects the performance of routing strategies thereby increasing data delivery latency and reducing packet delivery ratios. This paper presents a taxonomy of various data collection/dissemination schemes that exploit sink mobility. Based on how sink mobility is exploited in the sensor field, we classify existing schemes into three classes, namely path constrained, path unconstrained, and controlled sink mobility-based schemes. We also organize existing schemes based on their primary goals and provide a comparative study to aid readers in selecting the appropriate scheme in accordance with their particular intended applications and network dynamics. Finally, we conclude our discussion with the identification of some unresolved issues in pursuit of data delivery to a mobile sink.

13.
Sensors (Basel) ; 14(1): 1322-57, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24419163

RESUMO

Wireless Body Sensor Networks (WBSNs) constitute a subset of Wireless Sensor Networks (WSNs) responsible for monitoring vital sign-related data of patients and accordingly route this data towards a sink. In routing sensed data towards sinks, WBSNs face some of the same routing challenges as general WSNs, but the unique requirements of WBSNs impose some more constraints that need to be addressed by the routing mechanisms. This paper identifies various issues and challenges in pursuit of effective routing in WBSNs. Furthermore, it provides a detailed literature review of the various existing routing protocols used in the WBSN domain by discussing their strengths and weaknesses.


Assuntos
Técnicas Biossensoriais , Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Coleta de Dados , Humanos , Pacientes , Telemetria/métodos
14.
J Med Syst ; 38(1): 9997, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24346931

RESUMO

The Telecare Medical Information System (TMIS) provides a set of different medical services to the patient and medical practitioner. The patients and medical practitioners can easily connect to the services remotely from their own premises. There are several studies carried out to enhance and authenticate smartcard-based remote user authentication protocols for TMIS system. In this article, we propose a set of enhanced and authentic Three Factor (3FA) remote user authentication protocols utilizing a smartphone capability over a dynamic Cloud Computing (CC) environment. A user can access the TMIS services presented in the form of CC services using his smart device e.g. smartphone. Our framework transforms a smartphone to act as a unique and only identity required to access the TMIS system remotely. Methods, Protocols and Authentication techniques are proposed followed by security analysis and a performance analysis with the two recent authentication protocols proposed for the healthcare TMIS system.


Assuntos
Segurança Computacional/instrumentação , Confidencialidade , Troca de Informação em Saúde , Algoritmos , Humanos , Internet , Telemedicina
15.
Sensors (Basel) ; 12(4): 3964-96, 2012 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-23443040

RESUMO

Recent years have witnessed a growing interest in deploying large populations of microsensors that collaborate in a distributed manner to gather and process sensory data and deliver them to a sink node through wireless communications systems. Currently, there is a lot of interest in data routing for Wireless Sensor Networks (WSNs) due to their unique challenges compared to conventional routing in wired networks. In WSNs, each data routing approach follows a specific goal (goals) according to the application. Although the general goal of every data routing approach in WSNs is to extend the network lifetime and every approach should be aware of the energy level of the nodes, data routing approaches may focus on one (or some) specific goal(s) depending on the application. Thus, existing approaches can be categorized according to their routing goals. In this paper, the main goals of data routing approaches in sensor networks are described. Then, the best known and most recent data routing approaches in WSNs are classified and studied according to their specific goals.


Assuntos
Redes de Comunicação de Computadores , Processamento Eletrônico de Dados/métodos , Estatística como Assunto/métodos , Tecnologia sem Fio , Pesquisa
16.
Sensors (Basel) ; 11(3): 3163-76, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163792

RESUMO

Sensing and communication coverage are among the most important trade-offs in Wireless Sensor Network (WSN) design. A minimum bound of sensing coverage is vital in scheduling, target tracking and redeployment phases, as well as providing communication coverage. Some methods measure the coverage as a percentage value, but detailed information has been missing. Two scenarios with equal coverage percentage may not have the same Quality of Coverage (QoC). In this paper, we propose a new coverage measurement method using Delaunay Triangulation (DT). This can provide the value for all coverage measurement tools. Moreover, it categorizes sensors as 'fat', 'healthy' or 'thin' to show the dense, optimal and scattered areas. It can also yield the largest empty area of sensors in the field. Simulation results show that the proposed DT method can achieve accurate coverage information, and provides many tools to compare QoC between different scenarios.


Assuntos
Algoritmos , Redes de Comunicação de Computadores/instrumentação , Tecnologia sem Fio/instrumentação , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...