Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(21): 12081-12089, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548387

RESUMO

In the present work, a nanocatalyst, γ-Al2O3 nanoparticle-supported CoMo, was prepared experimentally and evaluated through a hydrodesulfurization (HDS) process for removing dibenzothiophene (DBT) from diesel fuel systematically in a trickle bed reactor (TBR). The results of the prepared catalyst characterization tests (scanning electron microscopy, X-ray diffraction (XRD), XRD phase quantification, and Brunner-Emmett-Teller) showed good distribution of active metals (CoMo), difference in surface morphology, and high dispersion of active metals. The catalyst exhibited good metal-support interactions without impacting the surface area significantly. A fully automated TBR reactor was used to evaluate the activity of the prepared catalyst in the HDS process at ranges of operating conditions: temperatures (250-350 °C), pressures (6-10 bar), liquid hourly space velocities (LHSV) (1-3 h-1), and the activity of the prepared catalyst were compared to a commercial catalyst based on Co-Mo/γ-alumina. The results showed an obvious enhancement in the HDS process using the homemade nanocatalyst compared to the commercial catalyst. It has also been found that an increase in temperature led to an increase in the conversion from 68.77 to 91.57%, a little positive effect on conversion when pressure was increased, and a significant decrease in conversion (from 91.57 to 75.58%) as LHSV was increased. A kinetic model was developed for the HDS process to estimate kinetic parameters and apply the parameters in reactor design. The developed model showed that the DBT concentration in diesel fuel can be reduced significantly, 3000-240 ppm, at the optimum experimental conditions.

2.
RSC Adv ; 10(56): 33911-33927, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35519034

RESUMO

This work focuses on the preparation, simulation, and optimization of the hydrodesulfurization (HDS) of dibenzothiophene (DBT) using a nanocatalyst. A homemade nanocatalyst (3 percent Co, 10 percent Mo/γ-Al2O3 nanoparticles) was used in a trickle bed reactor (TBR). The HDS kinetic model was estimated based on experimental observations over ranges of operating conditions to evaluate kinetic parameters of the HDS process and apply the key parameters. Based on these parameters, the performance of the TBR catalyzed by the nanocatalyst was evaluated and scaled up to a commercial scale. Also, the selectivity of HDS reactions was also modeled to achieve the highest yield of the desired hydrogenation product based on the desirable route of HDS. A comprehensive modeling and simulation of the HDS process in a TBR was developed and the output results were compared with experimental results. The comparison showed that the simulated and experimental data of the HDS process match well with a standard error of up to 5%. The best reaction kinetic variables obtained from the HDS pilot-plant (specific reaction rate expression, rate law, and selectivity) TBR have been utilized to develop an industrial scale HDS of DBT. The hydrodynamic key factors (effect of radial and axial dispersion) were employed to obtain the ratio of the optimal working reactor residence time to reactor diameter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...