Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920048

RESUMO

We study the electronic structure, stability, and thermal and optical properties of hexagonal SrS and SrSe monolayers using first-principles calculations. PBEsol generally improves the calculated equilibrium properties of solids and their surfaces, predicting a wider band gap of the monolayers, which is closer to the results obtained with HSE06. Phonon dispersion relations and the ab initio molecular dynamics (AIMD) method confirm the dynamic and thermal stability of both structures. The phonon modes of a SrSe monolayer are lower in energy than those of SrS, and the gap between the acoustic and optical modes is larger, leading to weaker thermal properties such as heat capacity. Additionally, both SrS and SrSe monolayers show an active optical response in the far-visible light region, with some differences in how they behave optically depending on the direction of polarization. SrS exhibits a slightly higher static dielectric constant than that of SrSe, and the primary optical conductivity also follows the same trend. Another important finding is that an SrS monolayer exhibits plasmonic excitations, but SrSe does not.

2.
Sci Rep ; 9(1): 14703, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604993

RESUMO

Transport properties of a quantum dot coupled to a photon cavity are investigated using a quantum master equation in the steady-state regime. In the off-resonance regime, when the photon energy is smaller than the energy spacing between the lowest electron states of the quantum dot, we calculate the current that is generated by photon replica states as the electronic system is pumped with photons. Tuning the electron-photon coupling strength, the photocurrent can be enhanced by the influences of the photon polarization, and the cavity-photon coupling strength of the environment. We show that the current generated through the photon replicas is very sensitive to the photon polarization, but it is not strongly dependent on the average number of photons in the environment.

3.
Nanomaterials (Basel) ; 9(7)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319544

RESUMO

We study the transport properties of a wire-dot system coupled to a cavity and a photon reservoir. The system is considered to be microstructured from a two-dimensional electron gas in a GaAs heterostructure. The 3D photon cavity is active in the far-infrared or the terahertz regime. Tuning the photon energy, Rabi-resonant states emerge and in turn resonant current peaks are observed. We demonstrate the effects of the cavity-photon reservoir coupling, the mean photon number in the reservoir, the electron-photon coupling and the photon polarization on the intraband transitions occurring between the Rabi-resonant states, and on the corresponding resonant current peaks. The Rabi-splitting can be controlled by the photon polarization and the electron-photon coupling strength. In the selected range of the parameters, the electron-photon coupling and the cavity-environment coupling strengths, we observe the results of the Purcell effect enhancing the current peaks through the cavity by increasing the cavity-reservoir coupling, while they decrease with increasing electron-photon coupling. In addition, the resonant current peaks are also sensitive to the mean number of photons in the reservoir.

4.
Nanomaterials (Basel) ; 9(5)2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091757

RESUMO

We theoretically investigate thermoelectric effects in a quantum dot system under the influence of a linearly polarized photon field confined to a 3D cavity. A temperature gradient is applied to the system via two electron reservoirs that are connected to each end of the quantum dot system. The thermoelectric current in the steady state is explored using a quantum master equation. In the presence of the quantized photons, extra channels, the photon replica states, are formed generating a photon-induced thermoelectric current. We observe that the photon replica states contribute to the transport irrespective of the direction of the thermal gradient. In the off-resonance regime, when the energy difference between the lowest states of the quantum dot system is smaller than the photon energy, the thermoelectric current is almost blocked and a plateau is seen in the thermoelectric current for strong electron-photon coupling strength. In the resonant regime, an inversion of thermoelectric current emerges due to the Rabi-splitting. Therefore, the photon field can change both the magnitude and the sign of the thermoelectric current induced by the temperature gradient in the absence of a voltage bias between the leads.

5.
Beilstein J Nanotechnol ; 10: 606-616, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873332

RESUMO

In this work, we theoretically model the time-dependent transport through an asymmetric double quantum dot etched in a two-dimensional wire embedded in a far-infrared (FIR) photon cavity. For the transient and the intermediate time regimes, the current and the average photon number are calculated by solving a Markovian master equation in the dressed-states picture, with the Coulomb interaction also taken into account. We predict that in the presence of a transverse magnetic field the interdot Rabi oscillations appearing in the intermediate and transient regime coexist with slower non-equilibrium fluctuations in the occupation of states for opposite spin orientation. The interdot Rabi oscillation induces charge oscillations across the system and a phase difference between the transient source and drain currents. We point out a difference between the steady-state correlation functions in the Coulomb blocking and the photon-assisted transport regimes.

6.
J Phys Condens Matter ; 30(14): 145303, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29542443

RESUMO

The goal of this work is to show how the thermospin polarization current in a quantum ring changes in the presence of Rashba spin-orbit coupling and a quantized single photon mode of a cavity the ring is placed in. Employing the reduced density operator and a general master equation formalism, we find that both the Rashba interaction and the photon field can significantly modulate the spin polarization and the thermospin polarization current. Tuning the Rashba coupling constant, degenerate energy levels are formed corresponding to the Aharonov-Casher destructive phase interference in the quantum ring system. Our analysis indicates that the maximum spin polarization can be observed at the points of degenerate energy levels due to spin accumulation in the system without the photon field. The thermospin current is thus suppressed. In the presence of the cavity, the photon field leads to an additional kinetic momentum of the electron. As a result the spin polarization can be enhanced by the photon field.

7.
J Phys Condens Matter ; 27(1): 015301, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25425564

RESUMO

We investigate coherent electron-switching transport in a double quantum waveguide system in a perpendicular static or vanishing magnetic field. The finite symmetric double waveguide is connected to two semi-infinite leads from both ends. The double waveguide can be defined as two parallel finite quantum wires or waveguides coupled via a window to facilitate coherent electron inter-wire transport. By tuning the length of the coupling window, we observe oscillations in the net charge current and a maximum electron conductance for the energy levels of the two waveguides in resonance. The importance of the mutual Coulomb interaction between the electrons and the influence of two-electron states is clarified by comparing results with and without the interaction. Even though the Coulomb interaction can lift two-electron states out of the group of active transport states the length of the coupling window can be tuned to locate two very distinct transport modes in the system in the late transient regime before the onset of a steady state. A static external magnetic field and quantum-dots formed by side gates (side quantum dots) can be used to enhance the inter-waveguide transport which can serve to implement a quantum logic device. The fact that the device can be operated in the transient regime can be used to enhance its speed.

8.
J Phys Condens Matter ; 25(46): 465302, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24132041

RESUMO

We investigate transient transport of electrons through a single quantum dot controlled by a plunger gate. The dot is embedded in a finite wire with length Lx assumed to lie along the x-direction with a parabolic confinement in the y-direction. The quantum wire, originally with hard-wall confinement at its ends, ±Lx/2, is weakly coupled at t = 0 to left and right leads acting as external electron reservoirs. The central system, the dot and the finite wire, is strongly coupled to a single cavity photon mode. A non-Markovian density-matrix formalism is employed to take into account the full electron-photon interaction in the transient regime. In the absence of a photon cavity, a resonant current peak can be found by tuning the plunger-gate voltage to lift a many-body state of the system into the source-drain bias window. In the presence of an x-polarized photon field, additional side peaks can be found due to photon-assisted transport. By appropriately tuning the plunger-gate voltage, the electrons in the left lead are allowed to undergo coherent inelastic scattering to a two-photon state above the bias window if initially one photon was present in the cavity. However, this photon-assisted feature is suppressed in the case of a y-polarized photon field due to the anisotropy of our system caused by its geometry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...