Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36984679

RESUMO

Concentrated bitterns discharged from saltworks have extremely high salinity, often up to 300 g/L, thus their direct disposal not only has a harmful effect on the environment, but also generates a depletion of a potential resource of renewable energy. Here, reverse electrodialysis (RED), an emerging electrochemical membrane process, is proposed to capture and convert the salinity gradient power (SGP) intrinsically conveyed by these bitterns also aiming at the reduction of concentrated salty water disposal. A laboratory-scale RED unit has been adopted to study the SGP potential of such brines, testing ion exchange membranes from different suppliers and under different operating conditions. Membranes supplied by Fujifilm, Fumatech, and Suez were tested, and the results were compared. The unit was fed with synthetic hypersaline solution mimicking the concentration of natural bitterns (5 mol/L of NaCl) on one side, and with variable concentration of NaCl dilute solutions (0.01-0.1 mol/L) on the other. The influence of several operating parameters has also been assessed, including solutions flowrate and temperature. Increasing feed solutions' temperature and velocity has been found to lower the stack resistance, which enhances the output performance of the RED stack. The maximum obtained power density (corrected to account for the effect of electrodic compartments, which can be very relevant in five cell pairs laboratory stacks) reached around 10.5 W/m2cellpair, with FUJIFILM Type 10 membranes, temperature of 40 °C, and a fluid velocity of 3 cm s-1 (as empty channel, considering 270 µm thickness). Notably, the present study results confirm the large potential for SGP generation from hypersaline brines, thus providing useful guidance for the harvesting of SGP in seawater saltworks all around the world.

2.
Membranes (Basel) ; 12(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36557111

RESUMO

The SEArcularMINE project aims to recover critical raw materials (CRMs) from brines from saltworks, thus facing a CRM shortage within Europe. To promote a fully circular scheme, the project valorises concentrated brines using electrodialysis with bipolar membranes (EDBM) to generate the required amounts of reactants (i.e., acids and bases). Regarding the performances of new non-woven cloth ion-exchange membranes (Suez): (i) an ultra-thin non-woven polyester cloth and (ii) a thin polypropylene cloth acting as the support structures were assessed. Additionally, the anion layer includes a catalyst to promote the water dissociation reaction. The effect of current density (100, 200, and 300 A m-2) on the performance of two combinations of membranes in an inter-laboratory exercise using 2 M NaCl was evaluated. According to statistical analysis ANOVA, there was an agreement on the results obtained in both laboratories. NaOH/HCl solutions up to 0.8 M were generated working at 300 A m-2 using both combinations of membranes. Regarding the performance parameters, stack set-ups incorporating thin polypropylene membranes showed lower specific energy consumption (SEC) and higher specific productivity (SP) than ultra-thin polypropylene ones. Hence, for ultra-thin polypropylene membranes, SEC was reported to be between 2.18 and 1.69 kWh kg-1NaOH and SP between 974 and 314 kg m-2 y-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...