Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(15): e35625, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170123

RESUMO

Plant leaf diseases are a significant concern in agriculture due to their detrimental impact on crop productivity and food security. Effective disease management depends on the early and accurate detection and diagnosis of these conditions, facilitating timely intervention and mitigation strategies. In this study, we address the pressing need for accurate and efficient methods for detecting leaf diseases by introducing a new architecture called DenseNet201Plus. DenseNet201 was modified by including superior data augmentation and pre-processing techniques, an attention-based transition mechanism, multiple attention modules, and dense blocks. These modifications enhance the robustness and accuracy of the proposed DenseNet201Plus model in diagnosing diseases related to plant leaves. The proposed architecture was trained using two distinct datasets: Banana Leaf Disease and Black Gram Leaf Disease. Through extensive experimentation, we evaluated the performance of DenseNet201Plus in terms of various classification metrics and achieved values of 0.9012, 0.9012, 0.9012, and 0.9716 for accuracy, precision, recall, and AUC for the banana leaf disease dataset, respectively. Similarly, the black gram leaf disease dataset model provides values of 0.9950, 0.9950, 0.9950, and 1.0 for accuracy, precision, recall, and AUC. Compared to other well-known pre-trained convolutional neural network (CNN) architectures, our proposed model demonstrates superior performance in both utilized datasets. Last but not least, we combined the strength of Grad-CAM++ with our proposed model to enhance the interpretability and localization of disease areas, providing valuable insights for agricultural practitioners and researchers to make informed decisions and optimize disease management strategies.

2.
Front Plant Sci ; 14: 1321877, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38273954

RESUMO

Leaf diseases are a global threat to crop production and food preservation. Detecting these diseases is crucial for effective management. We introduce LeafDoc-Net, a robust, lightweight transfer-learning architecture for accurately detecting leaf diseases across multiple plant species, even with limited image data. Our approach concatenates two pre-trained image classification deep learning-based models, DenseNet121 and MobileNetV2. We enhance DenseNet121 with an attention-based transition mechanism and global average pooling layers, while MobileNetV2 benefits from adding an attention module and global average pooling layers. We deepen the architecture with extra-dense layers featuring swish activation and batch normalization layers, resulting in a more robust and accurate model for diagnosing leaf-related plant diseases. LeafDoc-Net is evaluated on two distinct datasets, focused on cassava and wheat leaf diseases, demonstrating superior performance compared to existing models in accuracy, precision, recall, and AUC metrics. To gain deeper insights into the model's performance, we utilize Grad-CAM++.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA